scispace - formally typeset
Search or ask a question
Author

Xuming Zhang

Other affiliations: Aston University, University of Macau, University of Cambridge  ...read more
Bio: Xuming Zhang is an academic researcher from Hong Kong Polytechnic University. The author has contributed to research in topics: Optical switch & Laser. The author has an hindex of 56, co-authored 384 publications receiving 10788 citations. Previous affiliations of Xuming Zhang include Aston University & University of Macau.


Papers
More filters
Journal ArticleDOI
TL;DR: It is shown that NGF, acting on the TrkA receptor, activates a signalling pathway in which PI3 kinase plays a crucial early role, with Src kinase as the downstream element which binds to and phosphorylates TRPV1.
Abstract: Nociceptors, or pain-sensitive receptors, are unique among sensory receptors in that their sensitivity is increased by noxious stimulation. This process, called sensitization or hyperalgesia, is mediated by a variety of proinflammatory factors, including bradykinin, ATP and NGF, which cause sensitization to noxious heat stimuli by enhancing the membrane current carried by the heat- and capsaicin-gated ion channel, TRPV1. Several different mechanisms for sensitization of TRPV1 have been proposed. Here we show that NGF, acting on the TrkA receptor, activates a signalling pathway in which PI3 kinase plays a crucial early role, with Src kinase as the downstream element which binds to and phosphorylates TRPV1. Phosphorylation of TRPV1 at a single tyrosine residue, Y200, followed by insertion of TRPV1 channels into the surface membrane, explains most of the rapid sensitizing actions of NGF.

693 citations

Journal ArticleDOI
TL;DR: The suitable NT-Zn coatings with good intrinsic antibacterial properties can prevent post-operation infection and excellent osteogenesis inducing ability in the absence of extraneous osteogenic supplements is demonstrated and the ERK1/2 signaling is found to be involved.

262 citations

Journal ArticleDOI
TL;DR: In this paper, transition metal nitrides (TMNs) have been used for electrochemical water splitting to produce high-purity hydrogen and oxygen as alternatives to fossil fuel.
Abstract: The hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) constitute the two main processes in electrochemical water splitting to produce high-purity hydrogen and oxygen as alternatives to fossil fuel. Catalysts are crucial to high-efficiency conversion of water to hydrogen and oxygen. Although transition metal nitrides (TMNs) are promising HER and OER catalysts due to the unique electronic structure and high electrical conductivity, single-phase nitrides have inferior activity compared to Pt-group metals because of the unsatisfactory metal–hydrogen (M–H) bonding strength. TMNs-based composites in combination with other metals, carbon materials, and metallic compounds have been demonstrated to possess improved catalytic properties because the modified electronic structure leads to balanced M–H bonding strength, synergistic effects, and improved electrochemical stability. Herein, recent progress pertaining to TMNs is reviewed from the perspective of advanced catalysts for electrochemical water splitting. The challenges and future opportunities confronting TMNs-based catalysts are also discussed.

256 citations

Journal ArticleDOI
14 Aug 2008-Neuron
TL;DR: AKAP79/150 is identified as a final common element in heat hyperalgesia, on which the effects of multiple proinflammatory mediators converge, and modulation of the sensitivity of the heat-activated ion channel TRPV1 by the protein kinases PKA and PKC and by the phosphatase calcineurin depends on a signaling complex between these enzymes.

247 citations

Journal ArticleDOI
TL;DR: Micromachining technology has been developed for fabrication and actuation of micromechanical devices with switching frequencies up to the GHz level with a complementary approach to mechanically reconfi gure the metamaterial molecules.
Abstract: switchable metamaterials that possess very different states are almost a necessity. [ 11 ] Most of the tunable metamaterials that have been demonstrated rely on tuning constituent materials or changing surrounding media by introducing natural materials with higher tunability, such as liquid crystals and phase changing materials. [ 12–19 ] However, this limits the choices of materials and becomes increasingly diffi cult to implement at higher frequencies. Moreover, the tuning range is usually too limited to achieve a switching effect between strikingly different states. A complementary approach is to mechanically reconfi gure the metamaterial molecules. [ 20 , 21 ] Micromachining technology has been developed for fabrication and actuation of micromechanical devices [ 22–26 ] with switching frequencies up to the GHz level. [ 27 ]

238 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Proceedings Article
01 Jan 1999
TL;DR: In this paper, the authors describe photonic crystals as the analogy between electron waves in crystals and the light waves in artificial periodic dielectric structures, and the interest in periodic structures has been stimulated by the fast development of semiconductor technology that now allows the fabrication of artificial structures, whose period is comparable with the wavelength of light in the visible and infrared ranges.
Abstract: The term photonic crystals appears because of the analogy between electron waves in crystals and the light waves in artificial periodic dielectric structures. During the recent years the investigation of one-, two-and three-dimensional periodic structures has attracted a widespread attention of the world optics community because of great potentiality of such structures in advanced applied optical fields. The interest in periodic structures has been stimulated by the fast development of semiconductor technology that now allows the fabrication of artificial structures, whose period is comparable with the wavelength of light in the visible and infrared ranges.

2,722 citations

Journal ArticleDOI
TL;DR: This work aims to provide a comprehensive overview of electrospun nanofibers, including the principle, methods, materials, and applications, and highlights the most relevant and recent advances related to the applications by focusing on the most representative examples.
Abstract: Electrospinning is a versatile and viable technique for generating ultrathin fibers. Remarkable progress has been made with regard to the development of electrospinning methods and engineering of electrospun nanofibers to suit or enable various applications. We aim to provide a comprehensive overview of electrospinning, including the principle, methods, materials, and applications. We begin with a brief introduction to the early history of electrospinning, followed by discussion of its principle and typical apparatus. We then discuss its renaissance over the past two decades as a powerful technology for the production of nanofibers with diversified compositions, structures, and properties. Afterward, we discuss the applications of electrospun nanofibers, including their use as "smart" mats, filtration membranes, catalytic supports, energy harvesting/conversion/storage components, and photonic and electronic devices, as well as biomedical scaffolds. We highlight the most relevant and recent advances related to the applications of electrospun nanofibers by focusing on the most representative examples. We also offer perspectives on the challenges, opportunities, and new directions for future development. At the end, we discuss approaches to the scale-up production of electrospun nanofibers and briefly discuss various types of commercial products based on electrospun nanofibers that have found widespread use in our everyday life.

2,289 citations

Journal ArticleDOI
TL;DR: Three rare human genetic disorders, which result in deleterious effects on sensory perception, cognition and a variety of behaviours, have been shown to be attributable to mutations in brain-derived neurotrophic factor and two of the Trk receptors.
Abstract: Neurotrophins are a family of closely related proteins that were identified initially as survival factors for sensory and sympathetic neurons, and have since been shown to control many aspects of survival, development and function of neurons in both the peripheral and the central nervous systems. Each of the four mammalian neurotrophins has been shown to activate one or more of the three members of the tropomyosin-related kinase (Trk) family of receptor tyrosine kinases (TrkA, TrkB and TrkC). In addition, each neurotrophin activates p75 neurotrophin receptor (p75NTR), a member of the tumour necrosis factor receptor superfamily. Through Trk receptors, neurotrophins activate Ras, phosphatidyl inositol-3 (PI3)-kinase, phospholipase C-g1 and signalling pathways controlled through these proteins, such as the MAP kinases. Activation of p75NTR results in activation of the nuclear factor-kB (NF-kB) and Jun kinase as well as other signalling pathways. Limiting quantities of neurotrophins during development control the number of surviving neurons to ensure a match between neurons and the requirement for a suitable density of target innervation. The neurotrophins also regulate cell fate decisions, axon growth, dendrite growth and pruning and the expression of proteins, such as ion channels, transmitter biosynthetic enzymes and neuropeptide transmitters that are essential for normal neuronal function. Continued presence of the neurotrophins is required in the adult nervous system, where they control synaptic function and plasticity, and sustain neuronal survival, morphology and differentiation. They also have additional, subtler roles outside the nervous system. In recent years, three rare human genetic disorders, which result in deleterious effects on sensory perception, cognition and a variety of behaviours, have been shown to be attributable to mutations in brain-derived neurotrophic factor and two of the Trk receptors.

1,946 citations

Journal ArticleDOI
TL;DR: This Review summarizes research on photonic, terahertz and microwave electromagnetic metamaterials and metadevices with functionalities attained through the exploitation of phase-change media, semiconductors, graphene, carbon nanotubes and liquid crystals.
Abstract: Metamaterials, artificial electromagnetic media that are structured on the subwavelength scale, were initially suggested for the negative-index 'superlens'. Later metamaterials became a paradigm for engineering electromagnetic space and controlling propagation of waves: the field of transformation optics was born. The research agenda is now shifting towards achieving tunable, switchable, nonlinear and sensing functionalities. It is therefore timely to discuss the emerging field of metadevices where we define the devices as having unique and useful functionalities that are realized by structuring of functional matter on the subwavelength scale. In this Review we summarize research on photonic, terahertz and microwave electromagnetic metamaterials and metadevices with functionalities attained through the exploitation of phase-change media, semiconductors, graphene, carbon nanotubes and liquid crystals. The Review also encompasses microelectromechanical metadevices, metadevices engaging the nonlinear and quantum response of superconductors, electrostatic and optomechanical forces and nonlinear metadevices incorporating lumped nonlinear components.

1,741 citations