scispace - formally typeset
Search or ask a question
Author

Xun Wang

Bio: Xun Wang is an academic researcher from Tsinghua University. The author has contributed to research in topics: Medicine & Computer science. The author has an hindex of 84, co-authored 606 publications receiving 32187 citations. Previous affiliations of Xun Wang include National University of Defense Technology & Chinese Ministry of Education.


Papers
More filters
Journal ArticleDOI
01 Sep 2005-Nature
TL;DR: A unified approach to the synthesis of a large variety of nanocrystals with different chemistries and properties and with low dispersity is reported, based on a general phase transfer and separation mechanism occurring at the interfaces of the liquid, solid and solution phases present during the synthesis.
Abstract: New strategies for materials fabrication are of fundamental importance in the advancement of science and technology. Organometallic and other organic solution phase synthetic routes have enabled the synthesis of functional inorganic quantum dots or nanocrystals. These nanomaterials form the building blocks for new bottom-up approaches to materials assembly for a range of uses; such materials also receive attention because of their intrinsic size-dependent properties and resulting applications. Here we report a unified approach to the synthesis of a large variety of nanocrystals with different chemistries and properties and with low dispersity; these include noble metal, magnetic/dielectric, semiconducting, rare-earth fluorescent, biomedical, organic optoelectronic semiconducting and conducting polymer nanoparticles. This strategy is based on a general phase transfer and separation mechanism occurring at the interfaces of the liquid, solid and solution phases present during the synthesis. We believe our methodology provides a simple and convenient route to a variety of building blocks for assembling materials with novel structure and function in nanotechnology.

2,418 citations

Journal ArticleDOI
TL;DR: This work reports a general approach for the fabrication of monodisperse, hydrophilic, and single-crystalline ferrite microspheres by a solvothermal reduction method, and is the first report on the synthesis of single- Crystalline magneticmicrospheres.
Abstract: It has been thought that many novel properties and potential applications would emerge from monodisperse materials with small dimensions. Therefore, the synthesis of monodisperse nanoparticles has been intensively pursued for their technological and fundamental scientific importance. The synthesis of nanostructured magnetic materials has become a particularly important area of research and is attracting a growing interest because of the potential applications such materials have in ferrofluids, advanced magnetic materials, catalysts, colored pigments, high-density magnetic recording media, and medical diagnostics. Spinel ferrites (MFe2O4; M = Fe, Mn, Zn, or Co) are among the most important magnetic materials and have been widely used in electronic devices, information storage, magnetic resonance imaging (MRI), and drug-delivery technology. 14] Magnetite (Fe3O4) has recently been considered an ideal candidate for biological applications, both as a tag for sensing and imaging, and as an activity agent for antitumor therapy. For high performance in function-specific biological applications, magnetic particles must be spherical and have smooth surfaces, narrow size distributions, large surface areas (for maximal protein or enzyme binding), high magnetic saturation (ss) to provide maximum signal, and good dispersion in liquid media. 18,19] After Sugimoto and Matijević reported the preparation of magnetite particles with a narrow size distribution in the early 1980s, monodisperse ferrite has been fabricated by various chemistry-based synthetic methods, including coprecipitation, the reverse micelle method, microwave plasma synthesis, solgel techniques, freeze drying, ultrasound irradiation, hydrothermal methods, laser pyrolysis techniques, and thermal decomposition of organometallic and coordination compounds. 9,14, 18, 20–27] However, most of these approaches were focused on the synthesis of ferrite particles limited to diameters below 30 nm. There are no reports on the synthesis of well-crystallized ferrite nanoparticles with sizes similar to protein molecules. The development of a facile and economic synthetic strategy for the synthesis of hydrophilic, biocompatible magnetite nanoparticles would benefit their technical use in biomedical fields, especially for applications in vivo. Herein we report a general approach for the fabrication of monodisperse, hydrophilic, and single-crystalline ferrite microspheres by a solvothermal reduction method. To the best of our knowledge, this is the first report on the synthesis of single-crystalline magnetic microspheres. The ferrite spheres had monodisperse diameters that were tunable in the range of 200–800 nm. This work resulted in an important method for obtaining various monodisperse, magnetic, and single-crystalline microspheres, and provided an opportunity to further apply these promising materials. Typical syntheses of Fe3O4 and ferrite microspheres were carried out in a solvothermal system by modified reduction reactions between FeCl3 and ethylene glycol. We confirmed the production of Fe3O4 by conducting controlled oxidation reactions in which aand g-Fe2O3 were produced (Supporting Information). 28–29] The crystalline structures of MFe2O4 were characterized by XRD. As shown in Figure 1, the

1,910 citations

Journal ArticleDOI
Jiatao Zhang1, Junfeng Liu1, Qing Peng1, Xun Wang1, Yadong Li1 
TL;DR: In this paper, nearly monodisperse single-crystalline Cu2O nanospheres were prepared by an effective solution method with NaBH4 as the reducing agent.
Abstract: Nearly monodisperse single-crystalline Cu2O nanospheres were prepared by an effective solution method with NaBH4 as the reducing agent. Sensors based on them have good sensitivity to some flammable gases because thin films formed by nanospheres have capacious interspaces and enough spherical surfaces to interact with gases (ppm level).

1,049 citations

Journal ArticleDOI
TL;DR: In this paper, single-crystalline CeO2 nanorods with well-defined crystal planes have been synthesized by a facile solution-based hydrothermal method.

996 citations

Journal ArticleDOI
Xun Wang1, Yadong Li1
TL;DR: In this article, a selective control hydrothermal method has been developed in the preparation of α- and β-MnO2 single-crystal nanowires, which can be influenced by the concentration of NH4+ and SO42-.
Abstract: A selective-control hydrothermal method has been developed in the preparation of α- and β-MnO2 single-crystal nanowires. The crystal structure and morphology of the final products can be influenced by the concentration of NH4+ and SO42-.

978 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal Article
TL;DR: This book by a teacher of statistics (as well as a consultant for "experimenters") is a comprehensive study of the philosophical background for the statistical design of experiment.
Abstract: THE DESIGN AND ANALYSIS OF EXPERIMENTS. By Oscar Kempthorne. New York, John Wiley and Sons, Inc., 1952. 631 pp. $8.50. This book by a teacher of statistics (as well as a consultant for \"experimenters\") is a comprehensive study of the philosophical background for the statistical design of experiment. It is necessary to have some facility with algebraic notation and manipulation to be able to use the volume intelligently. The problems are presented from the theoretical point of view, without such practical examples as would be helpful for those not acquainted with mathematics. The mathematical justification for the techniques is given. As a somewhat advanced treatment of the design and analysis of experiments, this volume will be interesting and helpful for many who approach statistics theoretically as well as practically. With emphasis on the \"why,\" and with description given broadly, the author relates the subject matter to the general theory of statistics and to the general problem of experimental inference. MARGARET J. ROBERTSON

13,333 citations

Journal ArticleDOI
TL;DR: Two important future research directions are indicated and summarized, based on results published in the literature: the development of composite and nanostructured ES materials to overcome the major challenge posed by the low energy density.
Abstract: In this critical review, metal oxides-based materials for electrochemical supercapacitor (ES) electrodes are reviewed in detail together with a brief review of carbon materials and conducting polymers. Their advantages, disadvantages, and performance in ES electrodes are discussed through extensive analysis of the literature, and new trends in material development are also reviewed. Two important future research directions are indicated and summarized, based on results published in the literature: the development of composite and nanostructured ES materials to overcome the major challenge posed by the low energy density of ES (476 references).

7,642 citations