scispace - formally typeset
Search or ask a question
Author

Xuxian Jiang

Bio: Xuxian Jiang is an academic researcher from North Carolina State University. The author has contributed to research in topics: Android (operating system) & Malware. The author has an hindex of 49, co-authored 105 publications receiving 13864 citations. Previous affiliations of Xuxian Jiang include Florida State University & Purdue University.


Papers
More filters
Proceedings ArticleDOI
20 May 2012
TL;DR: Systematize or characterize existing Android malware from various aspects, including their installation methods, activation mechanisms as well as the nature of carried malicious payloads reveal that they are evolving rapidly to circumvent the detection from existing mobile anti-virus software.
Abstract: The popularity and adoption of smart phones has greatly stimulated the spread of mobile malware, especially on the popular platforms such as Android. In light of their rapid growth, there is a pressing need to develop effective solutions. However, our defense capability is largely constrained by the limited understanding of these emerging mobile malware and the lack of timely access to related samples. In this paper, we focus on the Android platform and aim to systematize or characterize existing Android malware. Particularly, with more than one year effort, we have managed to collect more than 1,200 malware samples that cover the majority of existing Android malware families, ranging from their debut in August 2010 to recent ones in October 2011. In addition, we systematically characterize them from various aspects, including their installation methods, activation mechanisms as well as the nature of carried malicious payloads. The characterization and a subsequent evolution-based study of representative families reveal that they are evolving rapidly to circumvent the detection from existing mobile anti-virus software. Based on the evaluation with four representative mobile security software, our experiments show that the best case detects 79.6% of them while the worst case detects only 20.2% in our dataset. These results clearly call for the need to better develop next-generation anti-mobile-malware solutions.

2,122 citations

Proceedings Article
01 Jan 2012
TL;DR: A permissionbased behavioral footprinting scheme to detect new samples of known Android malware families and a heuristics-based filtering scheme to identify certain inherent behaviors of unknown malicious families are proposed.
Abstract: In this paper, we present a systematic study for the detection of malicious applications (or apps) on popular Android Markets. To this end, we first propose a permissionbased behavioral footprinting scheme to detect new samples of known Android malware families. Then we apply a heuristics-based filtering scheme to identify certain inherent behaviors of unknown malicious families. We implemented both schemes in a system called DroidRanger. The experiments with 204, 040 apps collected from five different Android Markets in May-June 2011 reveal 211 malicious ones: 32 from the official Android Market (0.02% infection rate) and 179 from alternative marketplaces (infection rates ranging from 0.20% to 0.47%). Among those malicious apps, our system also uncovered two zero-day malware (in 40 apps): one from the official Android Market and the other from alternative marketplaces. The results show that current marketplaces are functional and relatively healthy. However, there is also a clear need for a rigorous policing process, especially for non-regulated alternative marketplaces.

805 citations

Proceedings ArticleDOI
25 Jun 2012
TL;DR: An automated system called RiskRanker is developed to scalably analyze whether a particular app exhibits dangerous behavior and is used to produce a prioritized list of reduced apps that merit further investigation, demonstrating the efficacy and scalability of riskRanker to police Android markets of all stripes.
Abstract: Smartphone sales have recently experienced explosive growth. Their popularity also encourages malware authors to penetrate various mobile marketplaces with malicious applications (or apps). These malicious apps hide in the sheer number of other normal apps, which makes their detection challenging. Existing mobile anti-virus software are inadequate in their reactive nature by relying on known malware samples for signature extraction. In this paper, we propose a proactive scheme to spot zero-day Android malware. Without relying on malware samples and their signatures, our scheme is motivated to assess potential security risks posed by these untrusted apps. Specifically, we have developed an automated system called RiskRanker to scalably analyze whether a particular app exhibits dangerous behavior (e.g., launching a root exploit or sending background SMS messages). The output is then used to produce a prioritized list of reduced apps that merit further investigation. When applied to examine 118,318 total apps collected from various Android markets over September and October 2011, our system takes less than four days to process all of them and effectively reports 3281 risky apps. Among these reported apps, we successfully uncovered 718 malware samples (in 29 families) and 322 of them are zero-day (in 11 families). These results demonstrate the efficacy and scalability of RiskRanker to police Android markets of all stripes.

640 citations

Proceedings ArticleDOI
07 Feb 2012
TL;DR: An app similarity measurement system called DroidMOSS is implemented that applies a fuzzy hashing technique to effectively localize and detect the changes from app-repackaging behavior, which shows a worrisome fact that 5% to 13% of apps hosted on six popular Android-based third-party marketplaces are repackaged.
Abstract: Recent years have witnessed incredible popularity and adoption of smartphones and mobile devices, which is accompanied by large amount and wide variety of feature-rich smartphone applications. These smartphone applications (or apps), typically organized in different application marketplaces, can be conveniently browsed by mobile users and then simply clicked to install on a variety of mobile devices. In practice, besides the official marketplaces from platform vendors (e.g., Google and Apple), a number of third-party alternative marketplaces have also been created to host thousands of apps (e.g., to meet regional or localization needs). To maintain and foster a hygienic smartphone app ecosystem, there is a need for each third-party marketplace to offer quality apps to mobile users.In this paper, we perform a systematic study on six popular Android-based third-party marketplaces. Among them, we find a common "in-the-wild" practice of repackaging legitimate apps (from the official Android Market) and distributing repackaged ones via third-party marketplaces. To better understand the extent of such practice, we implement an app similarity measurement system called DroidMOSS that applies a fuzzy hashing technique to effectively localize and detect the changes from app-repackaging behavior. The experiments with DroidMOSS show a worrisome fact that 5% to 13% of apps hosted on these studied marketplaces are repackaged. Further manual investigation indicates that these repackaged apps are mainly used to replace existing in-app advertisements or embed new ones to "steal" or re-route ad revenues. We also identify a few cases with planted backdoors or malicious payloads among repackaged apps. The results call for the need of a rigorous vetting process for better regulation of third-party smartphone application marketplaces.

625 citations

Proceedings ArticleDOI
28 Oct 2007
TL;DR: VMwatcher is presented - an "out-of-the-box" approach that overcomes the semantic gap challenge and identifies two unique malware detection capabilities: view comparison-based malware detection and its demonstration in rootkit detection and "out of the box" deployment of host-based anti-malware software with improved detection accuracy and tamper-resistance.
Abstract: An alarming trend in malware attacks is that they are armed with stealthy techniques to detect, evade, and subvert malware detection facilities of the victim. On the defensive side, a fundamental limitation of traditional host-based anti-malware systems is that they run inside the very hosts they are protecting ("in the box"), making them vulnerable to counter-detection and subversion by malware. To address this limitation, recent solutions based on virtual machine (VM) technologies advocate placing the malware detection facilities outside of the protected VM ("out of the box"). However, they gain tamper resistance at the cost of losing the native, semantic view of the host which is enjoyed by the "in the box" approach, thus leading to a technical challenge known as the semantic gap.In this paper, we present the design, implementation, and evaluation of VMwatcher - an "out-of-the-box" approach that overcomes the semantic gap challenge. A new technique called guest view casting is developed to systematically reconstruct internal semantic views (e.g., files, processes, and kernel modules) of a VM from the outside in a non-intrusive manner. Specifically, the new technique casts semantic definitions of guest OS data structures and functions on virtual machine monitor (VMM)-level VM states, so that the semantic view can be reconstructed. With the semantic gap bridged, we identify two unique malware detection capabilities: (1) view comparison-based malware detection and its demonstration in rootkit detection and (2) "out-of-the-box" deployment of host-based anti-malware software with improved detection accuracy and tamper-resistance. We have implemented a proof-of-concept prototype on both Linux and Windows platforms and our experimental results with real-world malware, including elusive kernel-level rootkits, demonstrate its practicality and effectiveness.

578 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: TaintDroid as mentioned in this paper is an efficient, system-wide dynamic taint tracking and analysis system capable of simultaneously tracking multiple sources of sensitive data by leveraging Android's virtualized execution environment.
Abstract: Today’s smartphone operating systems frequently fail to provide users with visibility into how third-party applications collect and share their private data. We address these shortcomings with TaintDroid, an efficient, system-wide dynamic taint tracking and analysis system capable of simultaneously tracking multiple sources of sensitive data. TaintDroid enables realtime analysis by leveraging Android’s virtualized execution environment. TaintDroid incurs only 32p performance overhead on a CPU-bound microbenchmark and imposes negligible overhead on interactive third-party applications. Using TaintDroid to monitor the behavior of 30 popular third-party Android applications, in our 2010 study we found 20 applications potentially misused users’ private information; so did a similar fraction of the tested applications in our 2012 study. Monitoring the flow of privacy-sensitive data with TaintDroid provides valuable input for smartphone users and security service firms seeking to identify misbehaving applications.

2,983 citations

Proceedings ArticleDOI
04 Oct 2010
TL;DR: Using TaintDroid to monitor the behavior of 30 popular third-party Android applications, this work found 68 instances of misappropriation of users' location and device identification information across 20 applications.
Abstract: Today's smartphone operating systems frequently fail to provide users with adequate control over and visibility into how third-party applications use their private data. We address these shortcomings with TaintDroid, an efficient, system-wide dynamic taint tracking and analysis system capable of simultaneously tracking multiple sources of sensitive data. TaintDroid provides realtime analysis by leveraging Android's virtualized execution environment. TaintDroid incurs only 14% performance overhead on a CPU-bound micro-benchmark and imposes negligible overhead on interactive third-party applications. Using TaintDroid to monitor the behavior of 30 popular third-party Android applications, we found 68 instances of potential misuse of users' private information across 20 applications. Monitoring sensitive data with TaintDroid provides informed use of third-party applications for phone users and valuable input for smartphone security service firms seeking to identify misbehaving applications.

2,379 citations

Proceedings ArticleDOI
20 May 2012
TL;DR: Systematize or characterize existing Android malware from various aspects, including their installation methods, activation mechanisms as well as the nature of carried malicious payloads reveal that they are evolving rapidly to circumvent the detection from existing mobile anti-virus software.
Abstract: The popularity and adoption of smart phones has greatly stimulated the spread of mobile malware, especially on the popular platforms such as Android. In light of their rapid growth, there is a pressing need to develop effective solutions. However, our defense capability is largely constrained by the limited understanding of these emerging mobile malware and the lack of timely access to related samples. In this paper, we focus on the Android platform and aim to systematize or characterize existing Android malware. Particularly, with more than one year effort, we have managed to collect more than 1,200 malware samples that cover the majority of existing Android malware families, ranging from their debut in August 2010 to recent ones in October 2011. In addition, we systematically characterize them from various aspects, including their installation methods, activation mechanisms as well as the nature of carried malicious payloads. The characterization and a subsequent evolution-based study of representative families reveal that they are evolving rapidly to circumvent the detection from existing mobile anti-virus software. Based on the evaluation with four representative mobile security software, our experiments show that the best case detects 79.6% of them while the worst case detects only 20.2% in our dataset. These results clearly call for the need to better develop next-generation anti-mobile-malware solutions.

2,122 citations

Proceedings ArticleDOI
01 Jan 2014
TL;DR: DREBIN is proposed, a lightweight method for detection of Android malware that enables identifying malicious applications directly on the smartphone and outperforms several related approaches and detects 94% of the malware with few false alarms.
Abstract: Malicious applications pose a threat to the security of the Android platform. The growing amount and diversity of these applications render conventional defenses largely ineffective and thus Android smartphones often remain unprotected from novel malware. In this paper, we propose DREBIN, a lightweight method for detection of Android malware that enables identifying malicious applications directly on the smartphone. As the limited resources impede monitoring applications at run-time, DREBIN performs a broad static analysis, gathering as many features of an application as possible. These features are embedded in a joint vector space, such that typical patterns indicative for malware can be automatically identified and used for explaining the decisions of our method. In an evaluation with 123,453 applications and 5,560 malware samples DREBIN outperforms several related approaches and detects 94% of the malware with few false alarms, where the explanations provided for each detection reveal relevant properties of the detected malware. On five popular smartphones, the method requires 10 seconds for an analysis on average, rendering it suitable for checking downloaded applications directly on the device.

1,905 citations

Proceedings ArticleDOI
09 Jun 2014
TL;DR: FlowDroid is presented, a novel and highly precise static taint analysis for Android applications that successfully finds leaks in a subset of 500 apps from Google Play and about 1,000 malware apps from the VirusShare project.
Abstract: Today's smartphones are a ubiquitous source of private and confidential data. At the same time, smartphone users are plagued by carelessly programmed apps that leak important data by accident, and by malicious apps that exploit their given privileges to copy such data intentionally. While existing static taint-analysis approaches have the potential of detecting such data leaks ahead of time, all approaches for Android use a number of coarse-grain approximations that can yield high numbers of missed leaks and false alarms. In this work we thus present FlowDroid, a novel and highly precise static taint analysis for Android applications. A precise model of Android's lifecycle allows the analysis to properly handle callbacks invoked by the Android framework, while context, flow, field and object-sensitivity allows the analysis to reduce the number of false alarms. Novel on-demand algorithms help FlowDroid maintain high efficiency and precision at the same time. We also propose DroidBench, an open test suite for evaluating the effectiveness and accuracy of taint-analysis tools specifically for Android apps. As we show through a set of experiments using SecuriBench Micro, DroidBench, and a set of well-known Android test applications, FlowDroid finds a very high fraction of data leaks while keeping the rate of false positives low. On DroidBench, FlowDroid achieves 93% recall and 86% precision, greatly outperforming the commercial tools IBM AppScan Source and Fortify SCA. FlowDroid successfully finds leaks in a subset of 500 apps from Google Play and about 1,000 malware apps from the VirusShare project.

1,730 citations