scispace - formally typeset
Search or ask a question
Author

Y. A. Chang

Bio: Y. A. Chang is an academic researcher from University of Wisconsin-Madison. The author has contributed to research in topics: Phase diagram & CALPHAD. The author has an hindex of 47, co-authored 328 publications receiving 8529 citations. Previous affiliations of Y. A. Chang include Lawrence Livermore National Laboratory & Aerojet Rocketdyne.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the diffusion coefficients of several transition elements (Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Zn) and a few non-transition elements (Mg, Si, Ga, and Ge) in fcc and liquid Al are critically reviewed and assessed by means of the least-squares method and semi-empirical correlations.
Abstract: The diffusion coefficients of several transition elements (Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Zn) and a few non-transition elements (Mg, Si, Ga, and Ge) in fcc and liquid Al are critically reviewed and assessed by means of the least-squares method and semi-empirical correlations. Inconsistent experimental data are identified and ruled out. In the case of the elements, for which plentiful experimental data are available in the literature, the least-squares analysis gives rise to the activation energies and pre-exponential factors in an Arrhenius equation. For the elements with limited experimental data or no data at all, the diffusion parameters are estimated from two semi-empirical correlations. In one correlation, the logarithmic pre-exponential factors are plotted against the activation energies for various elements in Al. In the other correlation, the activation energies are shown as a function of valences relative to Al. The diffusion coefficients calculated by using the evaluated diffusion parameters agree reasonably with the reliable experimental data. The proposed semi-empirical correlations are used to predict the diffusion coefficients of a few elements in liquid Al. A satisfactory agreement between the predicted and measured diffusion coefficients is obtained.

693 citations

Journal ArticleDOI
TL;DR: The newly enhanced PANDAT, integrating PanEngine, PanOptimizer and PanPrecipitation, bridges thermodynamic calculation, property optimization, and kinetic simulation of multi-component systems based on CALPHAD (CALculation of PHAse Diagram) approach.
Abstract: The newly enhanced PANDAT, integrating PanEngine, PanOptimizer and PanPrecipitation, bridges thermodynamic calculation, property optimization, and kinetic simulation of multi-component systems based on CALPHAD (CALculation of PHAse Diagram) approach. This software package, in combination with thermodynamic/kinetic/thermo-physical databases, provides an integrated workspace for phase diagram calculation and materials property simulation of multi-component systems. The simulation results, which include thermodynamic, kinetic, thermo-physical properties, and microstructure related information, are critically needed in materials design, in the selection of parameters for fabrication steps such as heat treatment, prediction of performance, and failure analysis. In addition to the functionalities provided by PANDAT as a stand-alone program, its calculation/optimization engines (PanEngine, PanOptimizer and PanPrecipitation) are built as shared libraries and enable their integration with broader applications in the field of Materials Science and Engineering.

418 citations

Journal ArticleDOI
TL;DR: In this article, three different analytical descriptions were used to describe the three different types of phases occurring in the Ti-Al system: the stoichiometric compounds, the disordered solution phases, and the ordered inter-metallic compounds which have homogeneity ranges.
Abstract: A thermodynamic description of the Ti-Al system has been developed. Three different analytical descriptions were used to describe the three different types of phases occurring in the Ti-Al system: the stoichiometric compounds, the disordered solution phases, and the ordered inter-metallic compounds which have homogeneity ranges. A least-squares technique was used to optimize the thermodynamic quantities of the analytical description using experimental data available in the literature. The calculated phase diagram, as well as the thermodynamic func-tions, agree well with the critically evaluated experimental data from the literature.

366 citations

Journal ArticleDOI
TL;DR: The features of PANDAT, a software package for multicomponent phase diagram calculation, and its calculation engine, PanEngine, are discussed.
Abstract: PANDAT is a software package for multicomponent phase diagram calculation. Given a set of thermodynamic parameters for all phases in a system and a set of user constraints, PANDAT automatically calculates the stable phase diagram without requiring either prior knowledge of the diagram or special user skills. The features of PANDAT are discussed and some application examples presented. In addition to PANDAT, its calculation engine, PanEngine, is also discussed.

346 citations

Journal ArticleDOI
TL;DR: In this paper, the adiabatic elastic constants c44, ½(c11−c12), and ½ (c11+c12+2c44) have been measured for copper, silver, and gold over the temperature range from 300° to about 800°K using the conventional ultrasonic pulse-echo technique.
Abstract: The adiabatic elastic constants c44, ½(c11−c12), and ½(c11+c12+2c44) have been measured for copper, silver, and gold over the temperature range from 300° to about 800°K using the conventional ultrasonic pulse‐echo technique. The room‐temperature values of the stiffness coefficients are shown to be in acceptable agreement with previously published data for the noble metals. Over the entire range from 300° to 800°K, it is found that, to a remarkably good approximation, the elastic constants for all three metals decrease linearly with temperature. Additional evidence is presented to show that the linear temperature dependence of the elastic constants for silver extends to at least 1000°K, i.e., to within 80% of the absolute melting temperature. The isothermal compressibilities calculated from the elastic constant data are used to evaluate the dilational term in the specific heat, Cdil=Cp−Cv, and it is established that the approximate Nernst‐Lindemann relation for estimating Cdil is valid for Cu, Ag, and Au a...

268 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The concept of high entropy introduces a new path of developing advanced materials with unique properties, which cannot be achieved by the conventional micro-alloying approach based on only one dominant element as mentioned in this paper.

4,394 citations

Journal ArticleDOI
TL;DR: The chemical, physical, and mechanical characteristics of nickel-based superalloys are reviewed with emphasis on the use of this class of materials within turbine engines as mentioned in this paper, and the role of major and minor alloying additions in multicomponent commercial cast and wrought super-alloys is discussed.
Abstract: The chemical, physical, and mechanical characteristics of nickel-based superalloys are reviewed with emphasis on the use of this class of materials within turbine engines. The role of major and minor alloying additions in multicomponent commercial cast and wrought superalloys is discussed. Microstructural stability and phases observed during processing and in subsequent elevated-temperature service are summarized. Processing paths and recent advances in processing are addressed. Mechanical properties and deformation mechanisms are reviewed, including tensile properties, creep, fatigue, and cyclic crack growth. I. Introduction N ICKEL-BASED superalloys are an unusual class of metallic materials with an exceptional combination of hightemperature strength, toughness, and resistance to degradation in corrosive or oxidizing environments. These materials are widely used in aircraft and power-generation turbines, rocket engines, and other challenging environments, including nuclear power and chemical processing plants. Intensive alloy and process development activities during the past few decades have resulted in alloys that can tolerate average temperatures of 1050 ◦ C with occasional excursions (or local hot spots near airfoil tips) to temperatures as high as 1200 ◦ C, 1 which is approximately 90% of the melting point of the material. The underlying aspects of microstructure and composition that result in these exceptional properties are briefly reviewed here. Major classes of superalloys that are utilized in gas-turbine engines and the corresponding processes for their production are outlined along with characteristic mechanical and physical properties.

1,826 citations

Journal ArticleDOI
TL;DR: In this paper, a review of precipitation in most precipitation-hardenable magnesium alloys is reviewed, and its relationship with strengthening is examined, and it is demonstrated that the precipitation phenomena in these alloys, especially in the very early stage of the precipitation process, are still far from being well understood, and many fundamental issues remain unsolved even after some extensive and concerted efforts made in the past 12 years.
Abstract: Magnesium alloys have received an increasing interest in the past 12 years for potential applications in the automotive, aircraft, aerospace, and electronic industries. Many of these alloys are strong because of solid-state precipitates that are produced by an age-hardening process. Although some strength improvements of existing magnesium alloys have been made and some novel alloys with improved strength have been developed, the strength level that has been achieved so far is still substantially lower than that obtained in counterpart aluminum alloys. Further improvements in the alloy strength require a better understanding of the structure, morphology, orientation of precipitates, effects of precipitate morphology, and orientation on the strengthening and microstructural factors that are important in controlling the nucleation and growth of these precipitates. In this review, precipitation in most precipitation-hardenable magnesium alloys is reviewed, and its relationship with strengthening is examined. It is demonstrated that the precipitation phenomena in these alloys, especially in the very early stage of the precipitation process, are still far from being well understood, and many fundamental issues remain unsolved even after some extensive and concerted efforts made in the past 12 years. The challenges associated with precipitation hardening and age hardening are identified and discussed, and guidelines are outlined for the rational design and development of higher strength, and ultimately ultrahigh strength, magnesium alloys via precipitation hardening.

1,174 citations

Journal ArticleDOI
TL;DR: In this article, a review of the literature on interfacial reactions between pure Sn or Sn-rich solders and common base metals used in Pb-free electronics production is presented.
Abstract: The objective of this review is to study interfacial reactions between pure Sn or Sn-rich solders, and common base metals used in Pb-free electronics production. In particular, the reasons leading to the observed interfacial reactions products and their metallurgical evolution have been analyzed. Results presented in the literature have been critically evaluated with the help of combined thermodynamic–kinetic approach based on the concept of local equilibrium and microstructural knowledge. The following conclusions have been reached: Firstly, the formations of intermetallic compounds in solid/liquid reaction couples are primarily controlled by the dissolution processes of base metals. Other factors that need be considered are the thermodynamic driving force for the formation of intermetallic compounds, their structures and concentration profiles in liquid. Secondly, annealing of solder interconnections in solid state can drastically change the microstructures formed in the solid/liquid reactions, especially if only one of the components in the solder takes part in the interfacial reactions. Thirdly, additional elements can have three major effects on the binary reactions between a base metal and Sn: (i) they can increase or decrease the reaction/growth rates, (ii) the additives can change the physical properties of the phases formed, and (iii) they can form additional reaction products or displace the binary equilibrium phases by forming new reaction products. Finally, if the local stable or metastable equilibrium is established at the interface, stability information together with kinetic considerations can provide a feasible approach to analyze interfacial reactions, which can have significant impact on the reliability of soldered electronics assemblies.

1,024 citations

Journal ArticleDOI
TL;DR: In this article, the authors reviewed the application of the phase-field method in different fields of materials science, including elastic interactions and fluid flow in multi-grain multi-phase structures in multicomponent materials.
Abstract: The phase-field method is reviewed against its historical and theoretical background. Starting from Van der Waals considerations on the structure of interfaces in materials the concept of the phase-field method is developed along historical lines. Basic relations are summarized in a comprehensive way. Special emphasis is given to the multi-phase-field method with extension to elastic interactions and fluid flow which allows one to treat multi-grain multi-phase structures in multicomponent materials. Examples are collected demonstrating the applicability of the different variants of the phase-field method in different fields of materials science.

1,004 citations