scispace - formally typeset
Search or ask a question
Author

Y. Ben-David

Bio: Y. Ben-David is an academic researcher from Mount Sinai Hospital, Toronto. The author has contributed to research in topics: Cyclin-dependent kinase 1 & Casein kinase 2. The author has an hindex of 2, co-authored 2 publications receiving 536 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The involvement of the murine Fli-1, Spi- 1, and avian v-ets genes in erythroleukemia induction suggests that activation of ets gene family members plays an important role in the progression of these multistage malignancies.
Abstract: The retroviral integration site Fli-1 is rearranged in 75% of the erythroleukemia cell clones induced by Friend murine leukemia virus (F-MuLV), whereas Spi-I/PU.1, a member of the ets family of DNA-binding proteins, is rearranged in 95% of the erythroleukemias induced by Friend spleen focus-forming virus (SFFV). To determine the transcriptional domain defined by Fli-1, we have isolated a cDNA clone that is highly expressed only in erythroleukemia cell lines with Fli-1 rearrangements. The protein sequence of this cDNA is very similar to Erg2, another member of the ets gene family. The hydrophilic carboxy-terminal end of the Fli-1 cDNA shares significant sequence similarity to the DNA-binding ETS domain found in all members of the ets family. PFGE analysis localized Fli-1 within 240 kb of the ets-1 proto-oncogene on mouse chromosome 9 and human chromosome 11q23, suggesting that ets-1 and Fli-1 arose from a common ancestral gene by gene duplication. The involvement of the murine Fli-1, Spi-1, and avian v-ets genes in erythroleukemia induction suggests that activation of ets gene family members plays an important role in the progression of these multistage malignancies.

377 citations

Journal ArticleDOI
TL;DR: Results suggest that Nek1 is a mammalian relative of the fungal NIMA cell cycle regulator, a protein kinase which controls initiation of mitosis in Aspergillus nidulans and preferentially phosphorylated beta‐casein in vitro.
Abstract: Screening of mouse cDNA expression libraries with antibodies to phosphotyrosine resulted in repeated isolation of cDNAs that encode a novel mammalian protein kinase of 774 amino acids, termed Nek1. Nek1 contains an N-terminal protein kinase domain which is most similar (42% identity) to the catalytic domain of NIMA, a protein kinase which controls initiation of mitosis in Aspergillus nidulans. In addition, both Nek1 and NIMA have a long, basic C-terminal extension, and are therefore similar in overall structure. Despite its identification with anti-phosphotyrosine antibodies, Nek1 contains sequence motifs characteristic of protein serine/threonine kinases. The Nek1 kinase domain, when expressed in bacteria, phosphorylated exogenous substrates primarily on serine/threonine, but also on tyrosine, indicating that Nek1 is a dual specificity kinase with the capacity to phosphorylate all three hydroxyamino acids. Like NIMA, Nek1 preferentially phosphorylated beta-casein in vitro. In situ RNA analysis of nek1 expression in mouse gonads revealed a high level of expression in both male and female germ cells, with a distribution consistent with a role in meiosis. These results suggest that Nek1 is a mammalian relative of the fungal NIMA cell cycle regulator.

181 citations


Cited by
More filters
Journal ArticleDOI
10 Sep 1992-Nature
TL;DR: Phylogenetically conserved restriction fragments in the vicinity of EWSR1 and EWSR2, the genomic regions where the breakpoints of chromosome 22 and chromosome 11 are, respectively, have allowed identification of transcribed sequences from these regions and has indicated that a hybrid transcript might be generated by the translocation.
Abstract: Ewing's sarcoma and related subtypes of primitive neuroectodermal tumours share a recurrent and specific t(11;22) (q24;q12) chromosome translocation, the breakpoints of which have recently been cloned. Phylogenetically conserved restriction fragments in the vicinity of EWSR1 and EWSR2, the genomic regions where the breakpoints of chromosome 22 and chromosome 11 are, respectively, have allowed identification of transcribed sequences from these regions and has indicated that a hybrid transcript might be generated by the translocation. Here we use these fragments to screen human complementary DNA libraries to show that the translocation alters the open reading frame of an expressed gene on chromosome 22 gene by substituting a sequence encoding a putative RNA-binding domain for that of the DNA-binding domain of the human homologue of murine Fli-1.

1,717 citations

Journal ArticleDOI
10 Nov 1994-Nature
TL;DR: Fusion proteins formed after chromosomal translocations are common in a range of tumour types; these are unique tumour antigens and are therefore potential targets for therapy design.
Abstract: Chromosomal abnormalities in tumours were recognized at the end of the last century but their significance has only recently become clear. Distinct translocations in leukaemias and in solid tumours lead to the activation of proto-oncogene products or, more commonly, creation of tumour-specific fusion proteins. The proteins in both categories are often transcription factors and thus disruption of transcriptional control plays a major role in the aetiology of cancer. Fusion proteins formed after chromosomal translocations are common in a range of tumour types; these are unique tumour antigens and are therefore potential targets for therapy design.

1,498 citations

Journal ArticleDOI
TL;DR: How several Ets-related proteins fit into this scheme, and how their activity is regulated both post- and pre-translationally are discussed are discussed.
Abstract: Interest in the Ets proteins has grown enormously over the last decade. The v-ets oncogene was originally discovered as part of a fusion protein expressed by a transforming retrovirus (avian E26), and later shown to be transduced from a cellular gene. About 30 related proteins have now been found in species ranging from flies to humans, that resemble the vEts protein in the so-called 'ets domain'. The ets domain has been shown to be a DNA-binding domain, that specifically interacts with sequences containing the common core trinucleotide GGA. Furthermore, it is involved in protein-protein interactions with co-factors that help determine its biological activity. Many of the Ets-related proteins have been shown to be transcription activators, like other nuclear oncoproteins and anti-oncoproteins (Jun, Fos, Myb, Myc, Rel, p53, etc.). However, Ets-like proteins may have other functions, such as in DNA replication and a general role in transcription activation. Ets proteins have been implicated in regulation of gene expression during a variety of biological processes, including growth control, transformation, T-cell activation, and developmental programs in many organisms. Signals regulating cell growth are transmitted from outside the cell to the nucleus by growth factors and their receptors. G-proteins, kinases and transcription factors. We will discuss how several Ets-related proteins fit into this scheme, and how their activity is regulated both post- and pre-translationally. Loss of normal control is often associated with conversion to an oncoprotein. vEts has been shown to have different properties from its progenitor, which might explain how it has become oncogenic. Oncogene-related products have been implicated in the control of various developmental processes. Evidence is accumulating for a role for Ets family members in Drosophila development, Xenopus oocyte maturation, lymphocyte differentiation, and viral infectious cycles. An ultimate hope in studying transformation by oncoproteins is to understand how cells become cancerous in humans, which would lead to more effective treatments. vEts induces erythroblastosis in chicken. Cellular Ets-family proteins can be activated by proviral insertion in mice and, most interestingly, by chromosome translocation in humans. We are at the beginning of understanding the multiple facets of regulation of Ets activity. Future work on the Ets family promises to provide important insights into both normal control of growth and differentiation, and deregulation in illness.

870 citations

Journal ArticleDOI
TL;DR: Findings suggest that fusion of EWS to different members of the ETS family of transcription factor genes may result in the expression of similar disease phenotypes.
Abstract: The t(11;22)(q24;q12), present in 85% of Ewing's sarcoma and related tumours, fuses the EWS gene from chromosome 22q12 and the ETS family member, FLI-1. This results in the expression of a chimaeric protein containing the amino-terminal portion of EWS fused to the ETS DNA-binding domain of FLI-1. We have identified a second Ewing's sarcoma translocation, t(21;22)(q22;q12), that fuses EWS to a different ETS family member, the ERG gene located on band 21q22. Identical EWS nucleotide sequences found in the EWS/FLI-1 fusion transcripts are fused to portions of ERG encoding an ETS DNA-binding domain resulting in expression of a hybrid EWS/ERG protein. These findings suggest that fusion of EWS to different members of the ETS family of transcription factor genes may result in the expression of similar disease phenotypes.

706 citations

Journal ArticleDOI
16 Jan 2003-Gene
TL;DR: The Ets family of transcription factors characterized by an evolutionarily-conserved DNA-binding domain regulates expression of a variety of viral and cellular genes by binding to a purine-rich GGAA/T core sequence in cooperation with other transcriptional factors and co-factors.

666 citations