scispace - formally typeset
Search or ask a question
Author

Y. C. Shen

Bio: Y. C. Shen is an academic researcher. The author has contributed to research in topics: Light-emitting diode & Quantum efficiency. The author has an hindex of 6, co-authored 8 publications receiving 2701 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the Auger recombination coefficient in quasi-bulk InxGa1−xN (x∼9%−15%) layers grown on GaN (0001) is measured by a photoluminescence technique.
Abstract: The Auger recombination coefficient in quasi-bulk InxGa1−xN (x∼9%–15%) layers grown on GaN (0001) is measured by a photoluminescence technique. The samples vary in InN composition, thickness, and threading dislocation density. Throughout this sample set, the measured Auger coefficient ranges from 1.4×10−30to2.0×10−30cm6s−1. The authors argue that an Auger coefficient of this magnitude, combined with the high carrier densities reached in blue and green InGaN∕GaN (0001) quantum well light-emitting diodes (LEDs), is the reason why the maximum external quantum efficiency in these devices is observed at very low current densities. Thus, Auger recombination is the primary nonradiative path for carriers at typical LED operating currents and is the reason behind the drop in efficiency with increasing current even under room-temperature (short-pulsed, low-duty-factor) injection conditions.

1,124 citations

Journal ArticleDOI
TL;DR: In this article, the authors presented a flip-chip light-emitting diodes (FCLEDs) with a large emitting area (∼0.70 mm2) and an optimized contacting scheme allowing high current (200-1000 mA, J∼30-143 A/cm2) operation with low forward voltages.
Abstract: Data are presented on high-power AlGaInN flip-chip light-emitting diodes (FCLEDs). The FCLED is “flipped-over” or inverted compared to conventional AlGaInN light-emitting diodes (LEDs), and light is extracted through the transparent sapphire substrate. This avoids light absorption from the semitransparent metal contact in conventional epitaxial-up designs. The power FCLED has a large emitting area (∼0.70 mm2) and an optimized contacting scheme allowing high current (200–1000 mA, J∼30–143 A/cm2) operation with low forward voltages (∼2.8 V at 200 mA), and therefore higher power conversion (“wall-plug”) efficiencies. The improved extraction efficiency of the FCLED provides 1.6 times more light compared to top-emitting power LEDs and ten times more light than conventional small-area (∼0.07 mm2) LEDs. FCLEDs in the blue wavelength regime (∼435 nm peak) exhibit ∼21% external quantum efficiency and ∼20% wall-plug efficiency at 200 mA and with record light output powers of 400 mW at 1.0 A.

556 citations

Journal ArticleDOI
TL;DR: In this article, the authors determined that Auger recombination is the limiting factor for quantum efficiency for InGaN-GaN (0001) light-emitting diodes (LEDs) at high current density.
Abstract: Auger recombination is determined to be the limiting factor for quantum efficiency for InGaN–GaN (0001) light-emitting diodes (LEDs) at high current density. High-power double-heterostructure (DH) LEDs are grown by metal-organic chemical vapor deposition. By increasing the active layer thickness, DH LEDs can reach a maximum in quantum efficiency at current densities above 200A∕cm2. Encapsulated thin-film flip-chip DH LEDs with peak wavelength of 432nm have an external quantum efficiency of 40% and output power of 2.3W at 2A.

513 citations

Journal ArticleDOI
TL;DR: In this article, a GaN-GaN multiple-quantum-well light-emitting diodes were fabricated on (101¯0) m plane GaN films grown on 4H-SiC substrates.
Abstract: InGaN–GaN multiple-quantum-well light-emitting diodes were fabricated on (101¯0) m plane GaN films grown on (101¯0) m plane 4H–SiC substrates. The [0001] axis of the epitaxial film is parallel to the [0001] axis of the substrate. The surface is striated, with features running perpendicular to the c axis and a maximum surface height difference of 45nm. Electroluminescence shows strong polarization anisotropy, with 7× more light emitted with polarization perpendicular to the c axis compared to parallel to the c axis. An Ahrrenius fit of the polarization ratio indicates that there is a 49meV difference in the energy gap between the two polarization states. This suggests that a high polarization ratio can be maintained at the high temperatures (>150°C) and drive current densities required for high-power light-emitting diode applications.

217 citations

Journal ArticleDOI
TL;DR: In this article, the key design features of high power light emitting diodes (LEDs) are covered with special emphasis on power packaging, flip-chip device design, and phosphor coating technology.
Abstract: High power light emitting diodes (LEDs) continue to increase in output flux with the best III-nitride based devices today emitting over 150 lm of white, cyan, or green light. The key design features of such products will be covered with special emphasis on power packaging, flip-chip device design, and phosphor coating technology. The high-flux performance of these devices is enabling many new applications for LEDs. Two of the most interesting of these applications are LCD display backlighting and vehicle forward lighting. The advantages of LEDs over competing lighting technologies will be covered in detail.

216 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the advantages and disadvantages of several WOLED architectures in terms of efficiency and color quality are discussed, as well as their widespread acceptance as solid-state lighting sources.
Abstract: White organic light-emitting devices (WOLEDs) have advanced over the last twelve years to the extent that these devices are now being considered as efficient solid-state lighting sources. Initially, WOLEDs were targeted towards display applications for use primarily as liquid-crystal display backlights. Now, their power efficiencies have surpassed those of incandescent sources due to improvements in device architectures, synthesis of novel materials, and the incorporation of electrophosphorescent emitters. This review discusses the advantages and disadvantages of several WOLED architectures in terms of efficiency and color quality. Hindrances to their widespread acceptance as solid-state lighting sources are also noted.

1,962 citations

Journal ArticleDOI
TL;DR: In this paper, the status and future outlook of III-V compound semiconductor visible-spectrum light-emitting diodes (LEDs) are presented and light extraction techniques are reviewed.
Abstract: Status and future outlook of III-V compound semiconductor visible-spectrum light-emitting diodes (LEDs) are presented. Light extraction techniques are reviewed and extraction efficiencies are quantified in the 60%+ (AlGaInP) and ~80% (InGaN) regimes for state-of-the-art devices. The phosphor-based white LED concept is reviewed and recent performance discussed, showing that high-power white LEDs now approach the 100-lm/W regime. Devices employing multiple phosphors for "warm" white color temperatures (~3000-4000 K) and high color rendering (CRI>80), which provide properties critical for many illumination applications, are discussed. Recent developments in chip design, packaging, and high current performance lead to very high luminance devices (~50 Mcd/m2 white at 1 A forward current in 1times1 mm2 chip) that are suitable for application to automotive forward lighting. A prognosis for future LED performance levels is considered given further improvements in internal quantum efficiency, which to date lag achievements in light extraction efficiency for InGaN LEDs

1,882 citations

Journal ArticleDOI
TL;DR: More than one-fifth of US electricity is used to power artificial lighting as discussed by the authors and light-emitting diodes based on group III/nitride semiconductors are bringing about a revolution in energy-efficient lighting.
Abstract: More than one-fifth of US electricity is used to power artificial lighting. Light-emitting diodes based on group III/nitride semiconductors are bringing about a revolution in energy-efficient lighting.

1,779 citations

Journal ArticleDOI
TL;DR: In this paper, an n-side-up GaN-based LED with a hexagonal "conelike" surface has been fabricated by using the laser lift-off technique followed by an anisotropic etching process to roughen the surface.
Abstract: Roughened surfaces of light-emitting diodes (LEDs) provide substantial improvement in light extraction efficiency. By using the laser-lift-off technique followed by an anisotropic etching process to roughen the surface, an n-side-up GaN-based LED with a hexagonal “conelike” surface has been fabricated. The enhancement of the LED output power depends on the surface conditions. The output power of an optimally roughened surface LED shows a twofold to threefold increase compared to that of an LED before surface roughening.

1,412 citations

Journal ArticleDOI
TL;DR: In this article, the authors describe the current state of high-power LED technology and the challenges that lay ahead for development of a true "solid state lamp" and demonstrate record performance and reliability for high power colored and white LEDs and show results from the worlds first 100-plus lumen white LED lamp.
Abstract: High-power light-emitting diodes (LEDs) have begun to differentiate themselves from their more common cousins the indicator LED. Today these LEDs are designed to generate 10-100 lm per LED with efficiencies that surpass incandescent and halogen bulbs. After a summary of the motivation for the development of the high-power LED and a look at the future markets, we describe the current state of high-power LED technology and the challenges that lay ahead for development of a true "solid state lamp." We demonstrate record performance and reliability for high-power colored and white LEDs and show results from the worlds first 100-plus lumen white LED lamp, the solid state equivalent of Thomas Edison's 20-W incandescent lightbulb approximately one century later.

1,134 citations