scispace - formally typeset
Search or ask a question
Author

Y.C. Tay

Bio: Y.C. Tay is an academic researcher. The author has contributed to research in topics: Zone Routing Protocol & Ad hoc wireless distribution service. The author has an hindex of 1, co-authored 1 publications receiving 279 citations.

Papers
More filters

Cited by
More filters
Proceedings ArticleDOI
01 Aug 1999
TL;DR: Ad-hoc On-Demand Distance Vector Routing is extended to offer novel multicast capabilities which follow naturally from the way AODV establishes unicast routes.
Abstract: An ad-hoc network is the cooperative engagement of a collection of (typically wireless) mobile nodes without the required intervention of any centralized access point or existing infrastructure. To provide optimal communication ability, a routing protocol for such a dynamic self-starting network must be capable of unicast, broadcast, and multicast. In this paper we extend Ad-hoc On-Demand Distance Vector Routing (AODV), an algorithm for the operation of such ad-hoc networks, to offer novel multicast capabilities which follow naturally from the way AODV establishes unicast routes. AODV builds multicast trees as needed (i.e., on-demand) to connect multicast group members. Control of the multicast tree is distributed so that there is no single point of failure. AODV provides loop-free routes for both unicast and multicast, even while repairing broken links. We include an evaluation methodology and simulation results to validate the correct and efficient operation of the AODV algorithm.

1,245 citations

Proceedings ArticleDOI
09 Jul 2003
TL;DR: This paper analytically prove several important properties of LMST: 1) the topology derived under LMST preserves the network connectivity; 2) the node degree of any node in the resulting topology is bounded by 6; and 3) the bottomology can be transformed into one with bidirectional links after removal of all unidirectional Links.
Abstract: In this paper, we present a minimum spanning tree (MST) based topology control algorithm, called local minimum spanning tree (LMST), for wireless multi-hop networks. In this algorithm, each node builds its local minimum spanning tree independently and only keeps on-tree nodes that are one-hop away as its neighbors in the final topology. We analytically prove several important properties of LMST: (1) the topology derived under LMST preserves the network connectivity; (2) the node degree of any node in the resulting topology is bounded by 6; and (3) the topology can be transformed into one with bidirectional links (without impairing the network connectivity) after removal of all uni-directional links. These results are corroborated in the simulation study.

827 citations

Proceedings ArticleDOI
21 Sep 1999
TL;DR: The protocol, termed ODMRP (on-demand multicast routing protocol), is a mesh-based, rather than a conventional tree-based multicast scheme and uses a forwarding group concept (only a subset of nodes forwards the multicast packets via scoped flooding).
Abstract: This paper presents a novel multicast routing protocol for mobile ad hoc wireless networks. The protocol, termed ODMRP (on-demand multicast routing protocol), is a mesh-based, rather than a conventional tree-based multicast scheme and uses a forwarding group concept (only a subset of nodes forwards the multicast packets via scoped flooding). It applies on-demand procedures to dynamically build routes and maintain multicast group membership. ODMRP is well suited for ad hoc wireless networks with mobile hosts where bandwidth is limited, topology changes frequently, and power is constrained. We evaluate ODMRP's scalability and performance via simulation.

795 citations

Journal ArticleDOI
TL;DR: On-Demand Multicast Routing Protocol (ODMRP) is well suited for ad hoc wireless networks with mobile hosts where bandwidth is limited, topology changes frequently, and power is constrained.
Abstract: An ad hoc network is a dynamically reconfigurable wireless network with no fixed infrastructure or central administration. Each host is mobile and must act as a router. Routing and multicasting protocols in ad hoc networks are faced with the challenge of delivering data to destinations through multihop routes in the presence of node movements and topology changes. This paper presents the On-Demand Multicast Routing Protocol (ODMRP) for wireless mobile and hoc networks. ODMRP is a mesh-based, rather than a conventional tree-based, multicast scheme and uses a forwarding group concept; only a subset of nodes forwards the multicast packets via scoped flooding. It applies on-demand procedures to dynamically build routes and maintain multicast group membership. ODMRP is well suited for ad hoc wireless networks with mobile hosts where bandwidth is limited, topology changes frequently, and power is constrained. We evaluate ODMRP performance with other multicast protocols proposed for ad hoc networks via extensive and detailed simulation.

779 citations

Journal ArticleDOI
TL;DR: The core-assisted mesh protocol (CAMP) is introduced for multicast routing in ad hoc networks, which generalizes the notion of core-based trees introduced for internet multicasting into multicast meshes that have much richer connectivity than trees.
Abstract: The core-assisted mesh protocol (CAMP) is introduced for multicast routing in ad hoc networks. CAMP generalizes the notion of core-based trees introduced for internet multicasting into multicast meshes that have much richer connectivity than trees. A shared multicast mesh is defined for each multicast group; the main goal of using such meshes is to maintain the connectivity of multicast groups even while network routers move frequently, CAMP consists of the maintenance of multicast meshes and loop-free packet forwarding over such meshes. Within the multicast mesh of a group, packets from any source in the group are forwarded along the reverse shortest path to the source, just as in traditional multicast protocols based on source-based trees. CAMP guarantees that within a finite time, every receiver of a multicast group has a reverse shortest path to each source of the multicast group. Multicast packets for a group are forwarded along the shortest paths front sources to receivers defined within the group's mesh. CAMP uses cores only to limit the traffic needed for a router to join a multicast group; the failure of cores does not stop packet forwarding or the process of maintaining the multicast meshes.

680 citations