scispace - formally typeset
Search or ask a question
Author

Y. Jeffrey Yang

Bio: Y. Jeffrey Yang is an academic researcher from United States Environmental Protection Agency. The author has contributed to research in topics: Water resources & Water quality. The author has an hindex of 15, co-authored 50 publications receiving 858 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a spatial analytical approach integrating mathematical modeling and geographical information sciences to quantitatively examine the relative importance of the separate and combined hydrologic and water quality impacts of climate and land use changes is presented.

169 citations

Journal ArticleDOI
TL;DR: The goal of this research is to explore the feasibility of using historical data of a study area to select, score, and weight factors quantitatively in the MCE, and shows that the use of MCE factors derived from historical data produces reasonable goodness of fit.

122 citations

Journal ArticleDOI
TL;DR: A real-time event adaptive detection, identification and warning (READiw) methodology is explored and it is shown that based on kinetic and chemical differences, the tested contaminants were distinguishable in forensic discrimination diagrams made of adaptively transformed sensor measurements.

108 citations

Journal ArticleDOI
TL;DR: In this paper, the spatiotemporal patterns of total phosphorus (TP) in Tampa Bay (Bay), Florida, with the aid of MODIS images and genetic programming (GP) models are explored.

58 citations

Journal ArticleDOI
TL;DR: A synthetic methodology is proposed that incorporates the ADAS-affected driving behavior modeling and state-of-the-art microscopic traffic flow modeling into a virtually simulated environment and reveals that fine-tuning theADAS algorithm parameter can significantly improve the throughput and reduce the traffic delay and conflicts at the study site in the medium and high penetration scenarios.
Abstract: Under the Connected Vehicle environment where vehicles and road-side infrastructure can communicate wirelessly, the Advanced Driver Assistance Systems (ADAS) can be adopted as an actuator for achieving traffic safety and mobility optimization at highway facilities. In this regard, the traffic management centers need to identify the optimal ADAS algorithm parameter set that leads to the optimization of the traffic safety and mobility performance, and broadcast the optimal parameter set wirelessly to individual ADAS-equipped vehicles. Once the ADAS-equipped drivers implement the optimal parameter set, they become active agents that work cooperatively to prevent traffic conflicts, and suppress the development of traffic oscillations into heavy traffic jams. Measuring systematic effectiveness of this traffic management requires am analytic capability to capture the quantified impact of the ADAS on individual drivers' behaviors and the aggregated traffic safety and mobility improvement due to such an impact. To this end, this research proposes a synthetic methodology that incorporates the ADAS-affected driving behavior modeling and state-of-the-art microscopic traffic flow modeling into a virtually simulated environment. Building on such an environment, the optimal ADAS algorithm parameter set is identified through a multi-objective optimization approach that uses the Genetic Algorithm. The developed methodology is tested at a freeway facility under low, medium and high ADAS market penetration rate scenarios. The case study reveals that fine-tuning the ADAS algorithm parameter can significantly improve the throughput and reduce the traffic delay and conflicts at the study site in the medium and high penetration scenarios. In these scenarios, the ADAS algorithm parameter optimization is necessary. Otherwise the ADAS will intensify the behavior heterogeneity among drivers, resulting in little traffic safety improvement and negative mobility impact. In the high penetration rate scenario, the identified optimal ADAS algorithm parameter set can be used to support different control objectives (e.g., safety improvement has priority vs. mobility improvement has priority).

53 citations


Cited by
More filters
Journal Article
TL;DR: 1. Place animal in induction chamber and anesthetize the mouse and ensure sedation, move it to a nose cone for hair removal using cream and reduce anesthesia to maintain proper heart rate.
Abstract: 1. Place animal in induction chamber and anesthetize the mouse and ensure sedation. 2. Once the animal is sedated, move it to a nose cone for hair removal using cream. Only apply cream to the area of the chest that will be utilized for imaging. Once the hair is removed, wipe area with wet gauze to ensure all hair is removed. 3. Move the animal to the imaging platform and tape its paws to the ECG lead plates and insert rectal probe. Body temperature should be maintained at 36-37°C. During imaging, reduce anesthesia to maintain proper heart rate. If the animal shows signs of being awake, use a higher concentration of anesthetic.

1,557 citations

01 Dec 2010
TL;DR: In this paper, spatial variations in sea surface temperature (SST) and rainfall changes over the tropics are investigated based on ensemble simulations for the first half of the twenty-first century under the greenhouse gas emission scenario A1B with coupled ocean-atmosphere general circulation models of the Geophysical Fluid Dynamics Laboratory (GFDL) and National Center for Atmospheric Research (NCAR).
Abstract: Spatial variations in sea surface temperature (SST) and rainfall changes over the tropics are investigated based on ensemble simulations for the first half of the twenty-first century under the greenhouse gas (GHG) emission scenario A1B with coupled ocean–atmosphere general circulation models of the Geophysical Fluid Dynamics Laboratory (GFDL) and National Center for Atmospheric Research (NCAR). Despite a GHG increase that is nearly uniform in space, pronounced patterns emerge in both SST and precipitation. Regional differences in SST warming can be as large as the tropical-mean warming. Specifically, the tropical Pacific warming features a conspicuous maximum along the equator and a minimum in the southeast subtropics. The former is associated with westerly wind anomalies whereas the latter is linked to intensified southeast trade winds, suggestive of wind–evaporation–SST feedback. There is a tendency for a greater warming in the northern subtropics than in the southern subtropics in accordance ...

782 citations

Journal ArticleDOI
16 Aug 2016-Sensors
TL;DR: The commonly used approaches and sensors employed in evaluating and quantifying the eleven water quality parameters, including chlorophyll-a (chl-a), colored dissolved organic matters (CDOM), Secchi disk depth (SDD), turbidity, total suspended sediments (TSS), water temperature (WT), total phosphorus (TP), sea surface salinity (SSS), dissolved oxygen (DO), biochemical oxygen demand (BOD) and chemical oxygendemand (COD).
Abstract: Remotely sensed data can reinforce the abilities of water resources researchers and decision makers to monitor waterbodies more effectively. Remote sensing techniques have been widely used to measure the qualitative parameters of waterbodies (i.e., suspended sediments, colored dissolved organic matter (CDOM), chlorophyll-a, and pollutants). A large number of different sensors on board various satellites and other platforms, such as airplanes, are currently used to measure the amount of radiation at different wavelengths reflected from the water’s surface. In this review paper, various properties (spectral, spatial and temporal, etc.) of the more commonly employed spaceborne and airborne sensors are tabulated to be used as a sensor selection guide. Furthermore, this paper investigates the commonly used approaches and sensors employed in evaluating and quantifying the eleven water quality parameters. The parameters include: chlorophyll-a (chl-a), colored dissolved organic matters (CDOM), Secchi disk depth (SDD), turbidity, total suspended sediments (TSS), water temperature (WT), total phosphorus (TP), sea surface salinity (SSS), dissolved oxygen (DO), biochemical oxygen demand (BOD) and chemical oxygen demand (COD).

554 citations

Journal ArticleDOI
TL;DR: In this article, a special issue on Remote Sensing of Inland Waters comprises 16 articles on freshwater ecosystems around the world ranging from lakes and reservoirs to river systems using optical data from a range of in situ instruments as well as airborne and satellite platforms.

459 citations