scispace - formally typeset
Search or ask a question
Author

Y Li

Bio: Y Li is an academic researcher. The author has an hindex of 1, co-authored 1 publications receiving 382 citations.

Papers
More filters
J W Tang, Y Li, I Eames, P K S Chan, G L Ridgway 
18 Aug 2011
TL;DR: Recommendations are made to improve the control of aerosol-transmitted infections in hospitals as well as in the design and construction of future isolation facilities.
Abstract: Summary The epidemics of severe acute respiratory syndrome (SARS) in 2003 highlighted both short- and long-range transmission routes, i.e. between infected patients and healthcare workers, and between distant locations. With other infections such as tuberculosis, measles and chickenpox, the concept of aerosol transmission is so well accepted that isolation of such patients is the norm. With current concerns about a possible approaching influenza pandemic, the control of transmission via infectious air has become more important. Therefore, the aim of this review is to describe the factors involved in: (1) the generation of an infectious aerosol, (2) the transmission of infectious droplets or droplet nuclei from this aerosol, and (3) the potential for inhalation of such droplets or droplet nuclei by a susceptible host. On this basis, recommendations are made to improve the control of aerosol-transmitted infections in hospitals as well as in the design and construction of future isolation facilities.

382 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review found a growing body of rigorous studies to guide healthcare design, especially with respect to reducing the frequency of hospital-acquired infections and the state of knowledge of evidence-based healthcare design has grown rapidly in recent years.
Abstract: Objective:This report surveys and evaluates the scientific research on evidence-based healthcare design and extracts its implications for designing better and safer hospitals.Background:It builds o...

1,119 citations

Journal ArticleDOI
TL;DR: It is demonstrated that the nosocomial transmission by airborne SARS-CoV-2 viral-laden aerosols in healthcare facilities may be plausible and clearly defined, science-based administrative, clinical, and physical measures are of paramount importance to eradicate the COVID-19 pandemic from the world.

871 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present the results of a combined experimental and theoretical investigation of the fluid dynamics of such violent expiratory events, which reveals that such flows are multiphase turbulent buoyant clouds with suspended droplets of various sizes.
Abstract: Violent respiratory events such as coughs and sneezes play a key role in transferring respiratory diseases between infectious and susceptible individuals. We present the results of a combined experimental and theoretical investigation of the fluid dynamics of such violent expiratory events. Direct observation of sneezing and coughing events reveals that such flows are multiphase turbulent buoyant clouds with suspended droplets of various sizes. Our observations guide the development of an accompanying theoretical model of pathogen-bearing droplets interacting with a turbulent buoyant momentum puff. We develop in turn discrete and continuous models of droplet fallout from the cloud in order to predict the range of pathogens. According to the discrete fallout model droplets remain suspended in the cloud until their settling speed matches that of the decelerating cloud. A continuous fallout model is developed by adapting models of sedimentation from turbulent fluids. The predictions of our theoretical models are tested against data gathered from a series of analogue experiments in which a particle-laden cloud is ejected into a relatively dense ambient. Our study highlights the importance of the multiphase nature of respiratory clouds, specifically the suspension of the smallest drops by circulation within the cloud, in extending the range of respiratory pathogens.

705 citations

Journal ArticleDOI
TL;DR: This review considers the commonly used term of ‘aerosol transmission’ in the context of some infectious agents that are well-recognized to be transmissible via the airborne route, and discusses other agents, like influenza virus, where the potential for airborne transmission is much more dependent on various host, viral and environmental factors, and where its potential for aerosol transmission may be underestimated.
Abstract: Although short-range large-droplet transmission is possible for most respiratory infectious agents, deciding on whether the same agent is also airborne has a potentially huge impact on the types (and costs) of infection control interventions that are required. The concept and definition of aerosols is also discussed, as is the concept of large droplet transmission, and airborne transmission which is meant by most authors to be synonymous with aerosol transmission, although some use the term to mean either large droplet or aerosol transmission. However, these terms are often used confusingly when discussing specific infection control interventions for individual pathogens that are accepted to be mostly transmitted by the airborne (aerosol) route (e.g. tuberculosis, measles and chickenpox). It is therefore important to clarify such terminology, where a particular intervention, like the type of personal protective equipment (PPE) to be used, is deemed adequate to intervene for this potential mode of transmission, i.e. at an N95 rather than surgical mask level requirement. With this in mind, this review considers the commonly used term of ‘aerosol transmission’ in the context of some infectious agents that are well-recognized to be transmissible via the airborne route. It also discusses other agents, like influenza virus, where the potential for airborne transmission is much more dependent on various host, viral and environmental factors, and where its potential for aerosol transmission may be underestimated.

578 citations

01 Nov 1999
TL;DR: In this paper, two forms of ventilation are discussed: mixing ventilation and displacement ventilation, where the interior is at an approximately uniform temperature and there is strong internal stratification, respectively, and the effects of wind on them are examined.
Abstract: Natural ventilation of buildings is the flow generated by temperature differences and by the wind. The governing feature of this flow is the exchange between an interior space and the external ambient. Although the wind may often appear to be the dominant driving mechanism, in many circumstances temperature variations play a controlling feature on the ventilation since the directional buoyancy force has a large influence on the flow patterns within the space and on the nature of the exchange with the outside. Two forms of ventilation are discussed: mixing ventilation, in which the interior is at an approximately uniform temperature, and displacement ventilation, where there is strong internal stratification. The dynamics of these buoyancy-driven flows are considered, and the effects of wind on them are examined. The aim behind this work is to give designers rules and intuition on how air moves within a building; the research reveals a fascinating branch of fluid mechanics.

559 citations