scispace - formally typeset
Search or ask a question
Author

Y. Pavan Kumar

Bio: Y. Pavan Kumar is an academic researcher from Raja Ramanna Centre for Advanced Technology. The author has contributed to research in topics: Interferometry & Wavefront. The author has an hindex of 8, co-authored 38 publications receiving 199 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: A new technique for the measurement of two-dimensional small angular deviation is presented and a monolithic prism interferometer, which is practically insensitive to vibration, is also proposed.
Abstract: A new technique for the measurement of two-dimensional small angular deviation is presented. A compound prism, which effectively produces a combination of two right-angled prisms in orthogonal directions, and plane reference surfaces have been utilized for the measurement of the orthogonal components of the angular tilt of an incident plane wavefront. Each orthogonal component of the angular tilt is separately measured from the angular rotation of the resultant wedge fringes between two plane wavefronts generated due to splitting of the incident plane wavefront by the corresponding set of right-angled prism and plane reference surface. The technique is shown to have high sensitivity for the measurement of small angle deviation. A monolithic prism interferometer, which is practically insensitive to vibration, is also proposed. Results obtained for the measurement of a known tilt angle are presented.

10 citations

Journal ArticleDOI
TL;DR: In this article, a technique for determination of the thickness of a plane-parallel transparent plate using a lateral shearing interferometer (LSI) is discussed. But this technique is limited to the case where a corrected lens focuses an expanded collimated laser beam on the surface of the plane mirror placed at the back focal plane of the lens.
Abstract: A technique for determination of the thickness of a plane-parallel transparent plate using a lateral shearing interferometer (LSI) is discussed. With this technique, the parallel plate whose thickness is to be determined is used to introduce a change in the collimation of the retro-reflected beam from an optical setup in which a corrected lens focuses an expanded collimated laser beam on the surface of a plane mirror placed at the back focal plane of the lens. The thickness of the plate is calculated by measuring the defocusing caused by the plate, which is inserted in the beam path between the collimating lens and the plane mirror, with an LSI. Results obtained for a parallel plate are presented.

10 citations

Journal ArticleDOI
TL;DR: A new technique for producing a white light differential interference contrast (DIC) image using a lateral shearing, rotation phase shifting Sagnac interferometer (SI) is proposed and the variable BPD provides an excellent means of improving the contrast of the image.
Abstract: A new technique for producing a white light differential interference contrast (DIC) image using a lateral shearing, rotation phase shifting Sagnac interferometer (SI) is proposed. The SI, placed in the image space after the tube lens of a microscope system with spatially coherent white light Kohler illumination, splits the image forming beam into coherent components with small lateral shear. Phase shifts, between the interfering components, which can be considered as biased phase difference (BPD), are introduced by applying small angular rotation of the SI in its own plane. This variable BPD between the interfering white light components produces a uniform intensity colored background. The object related phase shift, due to the height difference between two close points on the object surface with separation on the order of least resolvable separation of the microscope objective, in addition to the BPD would produce a change in intensity/hue/color against a uniform background due to the BPD. Thus a DIC image is formed and the variable BPD provides an excellent means of improving the contrast of the image.

9 citations

Journal ArticleDOI
TL;DR: In this article, a cyclic path optical configuration was used to generate coherent, virtual point sources at the back focal plane of a corrected telescope objective for producing a pair of mutually tilted collimated beams with linear orthogonal polarizations in a Fizeau interferometer cavity.
Abstract: A new technique, using a cyclic path optical configuration, for generating two coherent, virtual point sources at the back focal plane of a corrected telescope objective, for producing a pair of mutually tilted collimated beams with linear orthogonal polarizations in a Fizeau interferometer cavity is presented. The orthogonal linear polarization components reflected from the reference and the test surfaces are utilized for introducing polarization phase shift between the reference and test waves. A method for elimination of the residual instrumental aberration due to a slight departure from strict on-axis operation is discussed. The result for a plane optical surface is presented. Because, in polarization phase shifting, it is possible to capture all the necessary phase-shifted interferograms simultaneously, the vibration susceptibility can be minimized and the present system could be applied for dynamic interferometry.

8 citations

Journal ArticleDOI
TL;DR: Methods for overcoming the restriction of measurement accuracy due to beam aperture limitation and the effects of the positional tilt of the RAC have been discussed and results of validation experiments are presented.
Abstract: A new technique for external measurement of dihedral right angles is presented. An expanded, collimated, and linearly polarized He-Ne laser beam (632.8 nm) from a Fizeau interferometer is launched into a cyclic path optical configuration (CPOC) in which the counterpropagating p and s polarization components traverse the same optical path in opposite directions. A right-angled component (RAC), with its plane surfaces forming the right angle, is set to externally reflect the counterpropagating p and s components of the CPOC in nearly the same directions but with a lateral separation. In a plane normal to the right-angle edge of the RAC, the laterally separated collimated beams have angular separation, which is equal to twice the error in the dihedral right angle. Another CPOC setup is used to recombine the beams by reducing the lateral shear to zero. Error in right angle is calculated from the spacing of the resulting two-beam Fizeau fringes. Methods for overcoming the restriction of measurement accuracy due to beam aperture limitation and the effects of the positional tilt of the RAC have been discussed. Results of validation experiments are presented.

8 citations


Cited by
More filters
Journal Article
TL;DR: In this paper, the first observation of interference in the light scattered from two trapped atoms localized in a linear Paul trap was reported, and the visibility of the interference fringes can be explained in the frame-work of Bragg scattering by a harmonic crystal, but with important differences compared to the case of a large crystal.
Abstract: We report the first observation of interference in the light scattered from two trapped atoms ({sup 198}Hg{sup +} ions localized in a linear Paul trap). The visibility of the interference fringes can be explained in the frame-work of Bragg scattering by a harmonic crystal, but with important differences compared to the case of a large crystal. Comparison of the experimental data with theory shows that the interference pattern offers another method to determine ion temperatures and separations. Furthermore, by exploiting the atom`s internal structure we have found a way to obtain {open_quotes}which path{close_quotes} information without invoking the position-momentum uncertainty relation. If the light scattered by the atoms is detected in a polarization-sensitive way, then it is possible to selectively demonstrate either the particle-nature or the wave-nature of the scattered photons.

190 citations

Journal ArticleDOI
TL;DR: In this paper, the focal length and the depth of focus of the axicon lens of a polymeric microaxicon were measured, and the full width at half maximum of the beam was obtained.
Abstract: We present a quick, simple and accurate digital holographic characterization of the Bessel beams produced by polymeric microaxicons. This technique allows the numerical reconstruction of both intensity and phase of the beam at whichever point starting from a single acquired hologram. From these data, it is possible to go back to the axicon structure, and to gather information about their characteristics. In particular, the focal length and the depth of focus of the axicon lens are experimentally measured, and the full width at half maximum of the beam is obtained too. The depth of focus, very large for a Bessel beam with respect to a Gaussian one, is successfully exploited for optical trapping of micrometric objects.

49 citations

Journal ArticleDOI
TL;DR: A compact, fiber-coupled, six degree-of-freedom measurement system which enables fast, accurate calibration, and error mapping of precision linear stages is presented and has the advantages of simplicity, compactness, and relatively low cost.
Abstract: A compact, fiber-coupled, six degree-of-freedom measurement system which enables fast, accurate calibration, and error mapping of precision linear stages is presented. The novel design has the advantages of simplicity, compactness, and relatively low cost. This proposed sensor can simultaneously measure displacement, two straightness errors, and changes in pitch, yaw, and roll using a single optical beam traveling between the measurement system and a small target. The optical configuration of the system and the working principle for all degrees-of-freedom are presented along with the influence and compensation of crosstalk motions in roll and straightness measurements. Several comparison experiments are conducted to investigate the feasibility and performance of the proposed system in each degree-of-freedom independently. Comparison experiments to a commercial interferometer demonstrate error standard deviations of 0.33 μm in straightness, 0.14 μrad in pitch, 0.44 μradin yaw, and 45.8 μrad in roll.

29 citations

Journal ArticleDOI
TL;DR: A ring-shaped random laser in momentum space is designed by directly coupling a random laser with a commercial optical fiber, which is an excellent illuminating source for high-quality imaging with an extremely low speckle noise and may promote the practical applications of random lasers in the fields of sensing, in vivo biological imaging, and high brightness full-field illumination.
Abstract: A ring-shaped random laser in momentum space is designed by directly coupling a random laser with a commercial optical fiber. By using a simple approach of selectively coating the random gain layer on the surface of the fiber, red and yellow random lasers are respectively achieved with low threshold values and a good emission direction due to the guiding role of optical fibers. The unique coupling mechanism leads to a random laser with a ring shape in momentum space, which is an excellent illuminating source for high-quality imaging with an extremely low speckle noise. More importantly, a triple-state color-switchable random laser with yellow, red and yellow-red dual-colors can be flexible, and is obtained by simply moving the pump position. The results may promote the practical applications of random lasers in the fields of sensing, in vivo biological imaging, and high brightness full-field illumination.

27 citations

Journal ArticleDOI
TL;DR: In this article, a simple measurement technique for the thickness distribution of transparent plates is proposed by using the sampling moire method, which is automatically analyzed by measuring the phase difference of the moire fringe obtained from a single image, consistent with light refraction.
Abstract: A simple measurement technique for the thickness distribution of transparent plates is proposed by using the sampling moire method. The thickness distribution is automatically analyzed by measuring the phase difference of the moire fringe obtained from a single image, consistent with light refraction. The relationship between the actual thickness and phase difference of the moire fringe is calibrated by using glass plates of known thicknesses. The thickness measured by the present method was found to be in agreement with measurements using a digital micrometer. In our experiment, the average error in glass plate thickness was 1.9% over a 3.5 mm measurement range. Experimental results indicate that the present method can be useful for nondestructive measurements of the thickness distribution of various transparent plates.

23 citations