scispace - formally typeset
Search or ask a question
Author

Y. R. Shen

Bio: Y. R. Shen is an academic researcher from University of California, Berkeley. The author has contributed to research in topics: Liquid crystal & Monolayer. The author has an hindex of 98, co-authored 476 publications receiving 37313 citations. Previous affiliations of Y. R. Shen include University of Paris & Harvard University.


Papers
More filters
Journal ArticleDOI
TL;DR: Optical sum-frequency generation was used to study OH stretch vibrations of water molecules at fused quartz-water interfaces and indicates that orientations and bond ordering of interfacial water molecules are strongly affected by electrostatic interaction and hydrogen bonding.
Abstract: Optical sum-frequency generation was used to study OH stretch vibrations of water molecules at fused quartz-water interfaces. The results indicate that orientations and bond ordering of interfacial water molecules are strongly affected by electrostatic interaction and hydrogen bonding of the molecules with the quartz surface.

491 citations

Journal ArticleDOI
TL;DR: Second harmonic generation at a silver-air interface was enhanced due to surface roughness by a factor of 10{sup 4} as mentioned in this paper, which is believed to be responsible for the effect An unusually broad luminescence background extending far beyond the antiStokes side of the second harmonic was also observed
Abstract: Second harmonic generation at a silver-air interface was enhanced due to surface roughness by a factor of 10{sup 4} The local field enhancement is believed to be responsible for the effect An unusually broad luminescence background extending far beyond the antiStokes side of the second harmonic was also observed

440 citations

Journal ArticleDOI
TL;DR: In this article, the infrared−visible sum frequency generation (SFG) has been used to monitor the surface vibrational spectrum in situ during ethylene hydrogenation on Pt(111), where measurements were made near 1 atm of total pressure of ethylene and hydrogen and at 295 K.
Abstract: Infrared−visible sum frequency generation (SFG) has been used to monitor the surface vibrational spectrum in situ during ethylene hydrogenation on Pt(111). Measurements were made near 1 atm of total pressure of ethylene and hydrogen and at 295 K. Kinetic information was obtained simultaneously with the surface vibrational spectroscopy by monitoring the reaction rate with gas chromatography. The macroscopic turnover rate and surface adsorbate concentration could then be correlated. During the reaction ethylidyne, di-σ-bonded ethylene, ethyl, and π-bonded ethylene were observed on the surface in various amounts depending on conditions. Ethylidyne, a spectator species during hydrogenation, competed directly for sites with di-σ-bonded ethylene and its surface concentration could be shown to be completely uncorrelated with the rate of hydrogenation. In contrast, π-bonded ethylene did not compete for sites with the ethylidyne overlayer and was observed on the surface regardless of the surface concentration of e...

400 citations

Journal ArticleDOI
TL;DR: A phase-sensitive sum-frequency vibrational spectroscopic technique is developed to study interfacial water structure of water/quartz interfaces revealing an unprecedentedly detailed picture of the net polar orientations of the water species at the interface.
Abstract: A phase-sensitive sum-frequency vibrational spectroscopic technique is developed to study interfacial water structure of water/quartz interfaces. Measurements allow deduction of both real and imaginary parts of the surface nonlinear spectral response, revealing an unprecedentedly detailed picture of the net polar orientations of the water species at the interface. The orientations of the icelike and liquidlike species appear to respond very differently to the bulk pH change indicating the existence of different surface sites on quartz with different deprotonation pK values.

388 citations

Journal ArticleDOI
TL;DR: In this article, the second-order nonlinearities of the interface layer and the adjacent bulk were investigated and it was shown that both structural asymmetry and field discontinuity contribute to the interface nonlinearity, which is characterized by a local surface nonlinear susceptibility tensor.
Abstract: Second-harmonic generation from an interface, in relation to the second-order nonlinearities of the interface layer and the adjacent bulk, is considered. It is shown that both structural asymmetry and field discontinuity contribute to the interface nonlinearity, which, as far as second-harmonic generation is concerned, can be characterized by a local surface nonlinear susceptibility tensor. The bulk nonlinearity may also contribute to the second-harmonic signal, but is an order of magnitude weaker than the surface nonlinearity in centrosymmetric media with a large optical dielectric constant. The possibility of detecting submonolayers of adsorbates on various substrates is discussed qualitatively.

359 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
TL;DR: A review of gold nanoparticles can be found in this article, where the most stable metal nanoparticles, called gold colloids (AuNPs), have been used for catalysis and biology applications.
Abstract: Although gold is the subject of one of the most ancient themes of investigation in science, its renaissance now leads to an exponentially increasing number of publications, especially in the context of emerging nanoscience and nanotechnology with nanoparticles and self-assembled monolayers (SAMs). We will limit the present review to gold nanoparticles (AuNPs), also called gold colloids. AuNPs are the most stable metal nanoparticles, and they present fascinating aspects such as their assembly of multiple types involving materials science, the behavior of the individual particles, size-related electronic, magnetic and optical properties (quantum size effect), and their applications to catalysis and biology. Their promises are in these fields as well as in the bottom-up approach of nanotechnology, and they will be key materials and building block in the 21st century. Whereas the extraction of gold started in the 5th millennium B.C. near Varna (Bulgaria) and reached 10 tons per year in Egypt around 1200-1300 B.C. when the marvelous statue of Touthankamon was constructed, it is probable that “soluble” gold appeared around the 5th or 4th century B.C. in Egypt and China. In antiquity, materials were used in an ecological sense for both aesthetic and curative purposes. Colloidal gold was used to make ruby glass 293 Chem. Rev. 2004, 104, 293−346

11,752 citations

Journal ArticleDOI
TL;DR: In this paper, the authors describe recent progress in the theory of nanoparticle optical properties, particularly methods for solving Maxwell's equations for light scattering from particles of arbitrary shape in a complex environment.
Abstract: The optical properties of metal nanoparticles have long been of interest in physical chemistry, starting with Faraday's investigations of colloidal gold in the middle 1800s. More recently, new lithographic techniques as well as improvements to classical wet chemistry methods have made it possible to synthesize noble metal nanoparticles with a wide range of sizes, shapes, and dielectric environments. In this feature article, we describe recent progress in the theory of nanoparticle optical properties, particularly methods for solving Maxwell's equations for light scattering from particles of arbitrary shape in a complex environment. Included is a description of the qualitative features of dipole and quadrupole plasmon resonances for spherical particles; a discussion of analytical and numerical methods for calculating extinction and scattering cross-sections, local fields, and other optical properties for nonspherical particles; and a survey of applications to problems of recent interest involving triangula...

9,086 citations

Journal ArticleDOI
Ulrike Diebold1
TL;DR: Titanium dioxide is the most investigated single-crystalline system in the surface science of metal oxides, and the literature on rutile (1.1) and anatase surfaces is reviewed in this paper.

7,056 citations

Journal ArticleDOI
TL;DR: Graphene has high mobility and optical transparency, in addition to flexibility, robustness and environmental stability as discussed by the authors, and its true potential lies in photonics and optoelectronics, where the combination of its unique optical and electronic properties can be fully exploited, even in the absence of a bandgap, and the linear dispersion of the Dirac electrons enables ultrawideband tunability.
Abstract: The richness of optical and electronic properties of graphene attracts enormous interest. Graphene has high mobility and optical transparency, in addition to flexibility, robustness and environmental stability. So far, the main focus has been on fundamental physics and electronic devices. However, we believe its true potential lies in photonics and optoelectronics, where the combination of its unique optical and electronic properties can be fully exploited, even in the absence of a bandgap, and the linear dispersion of the Dirac electrons enables ultrawideband tunability. The rise of graphene in photonics and optoelectronics is shown by several recent results, ranging from solar cells and light-emitting devices to touch screens, photodetectors and ultrafast lasers. Here we review the state-of-the-art in this emerging field.

6,863 citations