scispace - formally typeset
Search or ask a question
Author

Y. Xu

Bio: Y. Xu is an academic researcher from Chinese Academy of Sciences. The author has contributed to research in topics: Milky Way & Murchison meteorite. The author has an hindex of 14, co-authored 29 publications receiving 2778 citations. Previous affiliations of Y. Xu include Washington University in St. Louis & Max Planck Society.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors used the Very Long Baseline Array and the Japanese VLBI Exploration of Radio Astronomy project to measure trigonometric parallaxes and proper motions of masers found in high-mass star-forming regions across the Milky Way.
Abstract: We are using the Very Long Baseline Array and the Japanese VLBI Exploration of Radio Astronomy project to measure trigonometric parallaxes and proper motions of masers found in high-mass star-forming regions across the Milky Way. Early results from 18 sources locate several spiral arms. The Perseus spiral arm has a pitch angle of 16 degrees +/- 3 degrees, which favors four rather than two spiral arms for the Galaxy. Combining positions, distances, proper motions, and radial velocities yields complete three-dimensional kinematic information. We find that star-forming regions on average are orbiting the Galaxy approximate to 15 km s(-1) slower than expected for circular orbits. By fitting the measurements to a model of the Galaxy, we estimate the distance to the Galactic center R(0) = 8.4 +/- 0.6 kpc and a circular rotation speed Theta(0) = 254 +/- 16 km s(-1). The ratio Theta(0)/R(0) can be determined to higher accuracy than either parameter individually, and we find it to be 30.3 +/- 0.9 km s(-1) kpc(-1), in good agreement with the angular rotation rate determined from the proper motion of Sgr A*. The data favor a rotation curve for the Galaxy that is nearly flat or slightly rising with Galactocentric distance. Kinematic distances are generally too large, sometimes by factors greater than 2; they can be brought into better agreement with the trigonometric parallaxes by increasing Theta(0)/R(0) from the IAU recommended value of 25.9 km s(-1) kpc(-1) to a value near 30 km s(-1) kpc(-1). We offer a "revised" prescription for calculating kinematic distances and their uncertainties, as well as a new approach for defining Galactic coordinates. Finally, our estimates of Theta(0) and Theta(0)/R(0), when coupled with direct estimates of R(0), provide evidence that the rotation curve of the Milky Way is similar to that of the Andromeda galaxy, suggesting that the dark matter halos of these two dominant Local Group galaxy are comparably massive.

1,167 citations

Journal ArticleDOI
TL;DR: In this paper, the authors used the VLBA and the Japanese VERA project to measure trigonometric parallaxes and proper motions of masers found in high-mass star-forming regions across the Milky Way.
Abstract: We are using the VLBA and the Japanese VERA project to measure trigonometric parallaxes and proper motions of masers found in high-mass star-forming regions across the Milky Way. Early results from 18 sources locate several spiral arms. The Perseus spiral arm has a pitch angle of 16 +/- 3 degrees, which favors four rather than two spiral arms for the Galaxy. Combining positions, distances, proper motions, and radial velocities yields complete 3-dimensional kinematic information. We find that star forming regions on average are orbiting the Galaxy ~15 km/s slower than expected for circular orbits. By fitting the measurements to a model of the Galaxy, we estimate the distance to the Galactic center R_o = 8.4 +/- 0.6 kpc and a circular rotation speed Theta_o = 254 +/- 16 km/s. The ratio Theta_o/R_o can be determined to higher accuracy than either parameter individually, and we find it to be 30.3 +/- 0.9 km/s/kpc, in good agreement with the angular rotation rate determined from the proper motion of Sgr A*. The data favor a rotation curve for the Galaxy that is nearly flat or slightly rising with Galactocentric distance. Kinematic distances are generally too large, sometimes by factors greater than two; they can be brought into better agreement with the trigonometric parallaxes by increasing Theta_o/R_o from the IAU recommended value of 25.9 km/s/kpc to a value near 30 km/s/kpc. We offer a "revised" prescription for calculating kinematic distances and their uncertainties, as well as a new approach for defining Galactic coordinates. Finally, our estimates of Theta_o and To/R_o, when coupled with direct estimates of R_o, provide evidence that the rotation curve of the Milky Way is similar to that of the Andromeda galaxy, suggesting that the dark matter halos of these two dominant Local Group galaxy are comparably massive.

1,055 citations

Journal ArticleDOI
TL;DR: In this article, the authors report trigonometric parallaxes and proper motions of water masers for 12 massive star forming regions in the Perseus spiral arm of the Milky Way as part of the BeSSel Survey.
Abstract: We report trigonometric parallaxes and proper motions of water masers for 12 massive star forming regions in the Perseus spiral arm of the Milky Way as part of the Bar and Spiral Structure Legacy (BeSSel) Survey. Combining our results with 14 parallax measurements in the literature, we estimate a pitch angle of 9 degrees.9 +/- 1 degrees.5 for a section of the Perseus arm. The three-dimensional Galactic peculiar motions of these sources indicate that on average they are moving toward the Galactic center and slower than the Galactic rotation.

157 citations

Journal ArticleDOI
TL;DR: The in situ spectral reflectance and elemental analysis of the lunar soil at the landing site suggest that the young basalt could be derived from an ilmenite-rich mantle reservoir and then assimilated by 10–20% of the last residual melt of the Moon's magma ocean.
Abstract: We report the surface exploration by the lunar rover Yutu that landed on the young lava flow in the northeastern part of the Mare Imbrium, which is the largest basin on the nearside of the Moon and is filled with several basalt units estimated to date from 3.5 to 2.0 Ga. The onboard lunar penetrating radar conducted a 114-m-long profile, which measured a thickness of ∼5 m of the lunar regolith layer and detected three underlying basalt units at depths of 195, 215, and 345 m. The radar measurements suggest underestimation of the global lunar regolith thickness by other methods and reveal a vast volume of the last volcano eruption. The in situ spectral reflectance and elemental analysis of the lunar soil at the landing site suggest that the young basalt could be derived from an ilmenite-rich mantle reservoir and then assimilated by 10–20% of the last residual melt of the lunar magma ocean.

102 citations

Journal ArticleDOI
TL;DR: In this article, the first parallax and proper motion measurements of 6.7 GHz methanol maser emission using the Australian Long Baseline Array were conducted, and it was shown from the Lyman continuum photon flux that the embedded core of the young star is of spectral type B1.
Abstract: We have conducted the first parallax and proper motion measurements of 6.7 GHz methanol maser emission using the Australian Long Baseline Array. The parallax of G 339.884-1.259 measured from five epochs of observations is 0.48 +/- 0.08 mas, corresponding to a distance of 2.1(-0.3)(+0.4) kpc, placing it in the Scutum spiral arm. This is consistent (within the combined uncertainty) with the kinematic distance estimate for this source at 2.5 +/- 0.5 kpc using the latest Solar and Galactic rotation parameters. We find from the Lyman continuum photon flux that the embedded core of the young star is of spectral type B1, demonstrating that luminous 6.7 GHz methanol masers can be associated with high-mass stars toward the lower end of the mass range.

43 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors review progress over the past decade in observations of large-scale star formation, with a focus on the interface between extragalactic and Galactic studies.
Abstract: We review progress over the past decade in observations of large-scale star formation, with a focus on the interface between extragalactic and Galactic studies. Methods of measuring gas contents and star-formation rates are discussed, and updated prescriptions for calculating star-formation rates are provided. We review relations between star formation and gas on scales ranging from entire galaxies to individual molecular clouds.

2,525 citations

Journal ArticleDOI
TL;DR: In this article, the stellar kinematics of the solar neighbourhood in terms of the velocity υ� of the Sun with respect to the local standard of rest were examined. But the results were not robust to the metallicity gradient in the disc, which introduces a correlation between the colour of a group of stars and the radial gradients of its properties.
Abstract: We re-examine the stellar kinematics of the solar neighbourhood in terms of the velocity υ� of the Sun with respect to the local standard of rest. We show that the classical determination of its component Vin the direction of Galactic rotation via Str¨ omberg's relation is undermined by the metallicity gradient in the disc, which introduces a correlation between the colour of a group of stars and the radial gradients of its properties. Comparing the local stellar kinematics to a chemodynamical model which accounts for these effects, we obtain (U, V, W)� = (11.1 +0.69 −0.75 , 12.24 +0.47 −0.47 ,7 .25 +0.37 −0.36 )k m s −1 , with additional systematic uncertainties ∼(1, 2, 0.5) km s −1 . In particular, Vis 7 km s −1 larger than previously estimated. The new values of (U, V, W)� are extremely insensitive to the metallicity gradient within the disc.

1,704 citations

Journal ArticleDOI
TL;DR: In this paper, the authors estimate the radius to the Galactic center, R-0, to be 8.34 +/- 0.16 kpc, a circular rotation speed at the Sun, Theta(0), to be 240 +/- 8 km s(-1), and a rotation curve that is nearly flat.
Abstract: Over 100 trigonometric parallaxes and proper motions for masers associated with young, high- mass stars have been measured with the Bar and Spiral Structure Legacy Survey, a Very Long Baseline Array key science project, the European VLBI Network, and the Japanese VLBI Exploration of Radio Astrometry project. These measurements provide strong evidence for the existence of spiral arms in the MilkyWay, accurately locating many arm segments and yielding spiral pitch angles ranging from about 7 degrees to 20 degrees. The widths of spiral arms increase with distance from the Galactic center. Fitting axially symmetric models of the MilkyWay with the three- dimensional position and velocity information and conservative priors for the solar and average source peculiar motions, we estimate the distance to the Galactic center, R-0, to be 8.34 +/- 0.16 kpc, a circular rotation speed at the Sun, Theta(0), to be 240 +/- 8 km s(-1), and a rotation curve that is nearly flat ( i. e., a slope of -0.2 +/- 0.4 km s(-1) kpc(-1)) between Galactocentric radii of approximate to 5 and 16 kpc. Assuming a " universal" spiral galaxy form for the rotation curve, we estimate the thin disk scale length to be 2.44 +/- 0.16 kpc. With this large data set, the parameters R-0 and Theta(0) are no longer highly correlated and are relatively insensitive to different forms of the rotation curve. If one adopts a theoretically motivated prior that high- mass star forming regions are in nearly circular Galactic orbits, we estimate a global solar motion component in the direction of Galactic rotation, V-circle dot = 14.6 +/- 5.0 km s(-1). While Theta(0) and V-circle dot are significantly correlated, the sum of these parameters is well constrained, Theta(0) + V circle dot = 255.2 +/- 5.1 km s(-1), as is the angular speed of the Sun in its orbit about the Galactic center, ( Theta(0) + V-circle dot)/R-0 = 30.57 +/- 0.43 km s(-1) kpc(-1). These parameters improve the accuracy of estimates of the accelerations of the Sun and the Hulse-Taylor binary pulsar in their Galactic orbits, significantly reducing the uncertainty in tests of gravitational radiation predicted by general relativity.

1,334 citations

Journal ArticleDOI
TL;DR: In this article, the authors present the current evidence from the analysis of the orbits of more than two dozen stars and from measurements of the size and motion of the central compact radio source, Sgr A*, that this radio source must be a massive black hole of about 4.4 \times 1e6 Msun, beyond any reasonable doubt.
Abstract: The Galactic Center is an excellent laboratory for studying phenomena and physical processes that may be occurring in many other galactic nuclei. The Center of our Milky Way is by far the closest galactic nucleus, and observations with exquisite resolution and sensitivity cover 18 orders of magnitude in energy of electromagnetic radiation. Theoretical simulations have become increasingly more powerful in explaining these measurements. This review summarizes the recent progress in observational and theoretical work on the central parsec, with a strong emphasis on the current empirical evidence for a central massive black hole and on the processes in the surrounding dense nuclear star cluster. We present the current evidence, from the analysis of the orbits of more than two dozen stars and from the measurements of the size and motion of the central compact radio source, Sgr A*, that this radio source must be a massive black hole of about 4.4 \times 1e6 Msun, beyond any reasonable doubt. We report what is known about the structure and evolution of the dense nuclear star cluster surrounding this black hole, including the astounding fact that stars have been forming in the vicinity of Sgr A* recently, apparently with a top-heavy stellar mass function. We discuss a dense concentration of fainter stars centered in the immediate vicinity of the massive black hole, three of which have orbital peri-bothroi of less than one light day. This 'S-star cluster' appears to consist mainly of young early-type stars, in contrast to the predicted properties of an equilibrium 'stellar cusp' around a black hole. This constitutes a remarkable and presently not fully understood 'paradox of youth'. We also summarize what is known about the emission properties of the accreting gas onto Sgr A* and how this emission is beginning to delineate the physical properties in the hot accretion zone around the event horizon.

1,115 citations

Journal ArticleDOI
TL;DR: In this paper, the authors review the key integrated, structural and kinematic parameters of the Galaxy, and point to uncertainties as well as directions for future progress, and show that the Galaxy is a luminous (L⋆) barred spiral with a central box/peanut bulge, a dominant disk, and a diffuse stellar halo.
Abstract: Our Galaxy, the Milky Way, is a benchmark for understanding disk galaxies. It is the only galaxy whose formation history can be studied using the full distribution of stars from faint dwarfs to supergiants. The oldest components provide us with unique insight into how galaxies form and evolve over billions of years. The Galaxy is a luminous (L⋆) barred spiral with a central box/peanut bulge, a dominant disk, and a diffuse stellar halo. Based on global properties, it falls in the sparsely populated “green valley” region of the galaxy color-magnitude diagram. Here we review the key integrated, structural and kinematic parameters of the Galaxy, and point to uncertainties as well as directions for future progress. Galactic studies will continue to play a fundamental role far into the future because there are measurements that can only be made in the near field and much of contemporary astrophysics depends on such observations.

1,084 citations