scispace - formally typeset
Search or ask a question
Author

Yael Shwartz

Bio: Yael Shwartz is an academic researcher from Weizmann Institute of Science. The author has contributed to research in topics: Chemistry education & Literacy. The author has an hindex of 11, co-authored 18 publications receiving 1286 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors present theoretical and empirical motivation for a learning progression for scientific modeling that aims to make the practice accessible and meaningful for learners, including the elements of the practice (constructing, using, evaluating, and revising scientific models) and the metaknowledge that guides and motivates the practice.
Abstract: Modeling is a core practice in science and a central part of scientific literacy. We present theoretical and empirical motivation for a learning progression for scientific modeling that aims to make the practice accessible and meaningful for learners. We define scientific modeling as including the elements of the practice (constructing, using, evaluating, and revising scientific models) and the metaknowledge that guides and motivates the practice (e.g., understanding the nature and purpose of models). Our learning progression for scientific modeling includes two dimensions that combine metaknowledge and elements of practice—scientific models as tools for predicting and explaining, and models change as understanding improves. We describe levels of progress along these two dimensions of our progression and illustrate them with classroom examples from 5th and 6th graders engaged in modeling. Our illustrations indicate that both groups of learners productively engaged in constructing and revising increasingly accurate models that included powerful explanatory mechanisms, and applied these models to make predictions for closely related phenomena. Furthermore, we show how students engaged in modeling practices move along levels of this progression. In particular, students moved from illustrative to explanatory models, and developed increasingly sophisticated views of the explanatory nature of models, shifting from models as correct or incorrect to models as encompassing explanations for multiple aspects of a target phenomenon. They also developed more nuanced reasons to revise models. Finally, we present challenges for learners in modeling practices—such as understanding how constructing a model can aid their own sensemaking, and seeing model building as a way to generate new knowledge rather than represent what they have already learned. 2009 Wiley Periodicals, Inc. J Res Sci Teach 46: 632-654, 2009

926 citations

Journal ArticleDOI
TL;DR: It was found that students improve their nominal and functional literacy; however, higher levels of chemical literacy, as defined within these frameworks, are only partly met.
Abstract: This study investigated the attainment of chemical literacy among 10th-12th grade chemistry students in Israel. Based on existing theoretical frameworks, assessment tools were developed, which measured students’ ability to: a) recognize chemical concepts as such (nominal literacy); b) define some key-concepts (functional literacy); c) use their understanding of chemical concepts to explain phenomena (conceptual literacy); and d) use their knowledge in chemistry to read a short article, or analyze information provided in commercial ads or internet resources (multi-dimensional literacy). It was found that students improve their nominal and functional literacy; however, higher levels of chemical literacy, as defined within these frameworks, are only partly met. The findings can be helpful in the process of designing new curricula, and emphasizing certain instructional strategies in order to foster chemical literacy. [Chem. Educ. Res. Pract., 2006, 7 (4), 203-225]

168 citations

Journal ArticleDOI
TL;DR: The Investigating and Questioning our World through Science and Technology (IQWST) curriculum project as mentioned in this paper is built on five key aspects of coherence: learning goal coherence, intra-unit coherence between content learning goals, scientific practices, and curricular activities, inter-Unit coherence supporting multidisciplinary connections and dependencies, professional development and curriculum materials to support classroom enactment, and science literacy expectations and general literacy skills.
Abstract: Coherent curricula are needed to help students develop deep understanding of important ideas in science. Too often students experience curriculum that is piecemeal and lacks coordination and consistency across time, topics, and disciplines. Investigating and Questioning our World through Science and Technology (IQWST) is a middle school science curriculum project that attempts to address these problems. IQWST units are built on 5 key aspects of coherence: (1) learning goal coherence; (2) intraunit coherence between content learning goals, scientific practices, and curricular activities; (3) interunit coherence supporting multidisciplinary connections and dependencies; (4) coherence between professional development and curriculum materials to support classroom enactment; and (5) coherence between science literacy expectations and general literacy skills. Dealing with these aspects of coherence involves trade-offs and challenges. This article illustrates some of the challenges related to the first ...

87 citations

Journal ArticleDOI
TL;DR: In this paper, the authors report on a study in which teachers, as part of their professional development, were involved in defining the term "chemical literacy", and suggested educational experiences that are necessary in order to attain it.
Abstract: The ongoing reform in science education in many countries, including Israel, has attainment of scientific literacy for all as one of its main goals. In this context, it is important to provide teachers with the opportunity to construct meaning for the term science literacy and by doing so to obtain a clear understanding of the new teaching goals. Here we report on a study in which teachers, as part of their professional development, were involved in defining the term ‘chemical literacy’; they discussed the need for it, and suggested educational experiences that are necessary in order to attain it. The programme was conducted as part of a reform in the content, as well as in the pedagogy, of chemistry education in Israel. The collected data provide some insights regarding the process by which the teachers’ perception of ‘chemical literacy’ developed and the way actual school practice influences teachers’ perception of ‘chemical literacy’.

87 citations

Journal ArticleDOI
TL;DR: In this article, the authors provide insight into short-term professionalization of teachers regarding teaching socioscientific issues (SSI) by enacting specially designed SSI curriculum materials, and explore indicators of stronger and weaker development of PCK for SSI teaching.
Abstract: The purpose of this study is to provide insight into short-term professionalization of teachers regarding teaching socioscientific issues (SSI). The study aimed to capture the development of science teachers' pedagogical content knowledge (PCK) for SSI teaching by enacting specially designed SSI curriculum materials. The study also explores indicators of stronger and weaker development of PCK for SSI teaching. Thirty teachers from four countries (Cyprus, Israel, Norway, and Spain) used one module (30–60 min lesson) of SSI materials. The data were collected through: (a) lesson preparation form (PCK-before), (b) lesson reflection form (PCK-after), (c) lesson observation table (PCK-in-action). The data analysis was based on the PCK model of Magnusson, Krajcik, and Borko (1999). Strong development of PCK for SSI teaching includes “Strong interconnections between the PCK components,” “Understanding of students' difficulties in SSI learning,” “Suggesting appropriate instructional strategies,” and “Focusing equally on science content and SSI skills.” Our findings point to the importance of these aspects of PCK development for SSI teaching. We argue that when professional development programs and curriculum materials focus on developing these aspects, they will contribute to strong PCK development for SSI teaching. The findings regarding the development in the components of PCK for SSI provide compelling evidence that science teachers can develop aspects of their PCK for SSI with the use of a single module. Most of the teachers developed their knowledge about students' understanding of science and instructional strategies. The recognition of student difficulties made the teacher consider specific teaching strategies which are in line with the learning objectives. There is an evident link between the development of PCK in instructional strategies and students' understanding of science for SSI teaching.

54 citations


Cited by
More filters
01 Sep 2012
TL;DR: In this article, a Mars Exploration Program lesson was prepared by Arizona State University's Mars Education Program, under contract to NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology.
Abstract: 1 On behalf of NASA’s Mars Exploration Program, this lesson was prepared by Arizona State University’s Mars Education Program, under contract to NASA’s Jet Propulsion Laboratory, a division of the California Institute of Technology. These materials may be distributed freely for non-commercial purposes. Copyright 2014; 2012; 2010; 2000. Last edited: April 24, 2014 Marsbound! Mission to the Red Planet

4,486 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present theoretical and empirical motivation for a learning progression for scientific modeling that aims to make the practice accessible and meaningful for learners, including the elements of the practice (constructing, using, evaluating, and revising scientific models) and the metaknowledge that guides and motivates the practice.
Abstract: Modeling is a core practice in science and a central part of scientific literacy. We present theoretical and empirical motivation for a learning progression for scientific modeling that aims to make the practice accessible and meaningful for learners. We define scientific modeling as including the elements of the practice (constructing, using, evaluating, and revising scientific models) and the metaknowledge that guides and motivates the practice (e.g., understanding the nature and purpose of models). Our learning progression for scientific modeling includes two dimensions that combine metaknowledge and elements of practice—scientific models as tools for predicting and explaining, and models change as understanding improves. We describe levels of progress along these two dimensions of our progression and illustrate them with classroom examples from 5th and 6th graders engaged in modeling. Our illustrations indicate that both groups of learners productively engaged in constructing and revising increasingly accurate models that included powerful explanatory mechanisms, and applied these models to make predictions for closely related phenomena. Furthermore, we show how students engaged in modeling practices move along levels of this progression. In particular, students moved from illustrative to explanatory models, and developed increasingly sophisticated views of the explanatory nature of models, shifting from models as correct or incorrect to models as encompassing explanations for multiple aspects of a target phenomenon. They also developed more nuanced reasons to revise models. Finally, we present challenges for learners in modeling practices—such as understanding how constructing a model can aid their own sensemaking, and seeing model building as a way to generate new knowledge rather than represent what they have already learned. 2009 Wiley Periodicals, Inc. J Res Sci Teach 46: 632-654, 2009

926 citations

01 Jan 2013
TL;DR: The National Research Council's Discipline-Based Education Research (DBER) report (National Research Council, 2012) captures the state-of-theart advances in our understanding of engineering and science student learning and highlights commonalities with other science-based education research programs.
Abstract: Engineering education research (EER) has been on the fast track since 2004 with an exponential rise in the number of Ph.D.s awarded and the establishment of new programs, even entire EER departments. The National Research Council’s Discipline-Based Education Research (DBER) report (National Research Council, 2012) captures the state-of-the-art advances in our understanding of engineering and science student learning and highlights commonalities with other science-based education research programs. The DBER report is the consensus analysis of experts in undergraduate education research in physics, chemistry, biology, geosciences, astronomy, and engineering. The study committee, chaired by Susan Singer, also included higher education researchers, learning scientists, and cognitive psychologists. A central aspect of the DBER report is the focus on and application of research in the education, learning, and social-behavioral sciences to science and engineering curricula design and teaching methods. Froyd, Wankat, and Smith (2012) identified five major shifts in engineering education in the past 100 years: 1. A shift from hands-on and practical emphasis to engineering science and analytical emphasis 2. A shift to outcomes-based education and accreditation 3. A shift to emphasizing engineering design 4. A shift to applying education, learning, and social-behavioral sciences research 5. A shift to integrating information, computational, and communications technology in education

721 citations