scispace - formally typeset
Search or ask a question
Author

Yafa Ariav

Bio: Yafa Ariav is an academic researcher from Hebrew University of Jerusalem. The author has contributed to research in topics: Unfolded protein response & Endoplasmic reticulum. The author has an hindex of 8, co-authored 8 publications receiving 845 citations.

Papers
More filters
Journal ArticleDOI
01 Apr 2008-Diabetes
TL;DR: The essential role of mTOR/S6K1 in orchestrating β-cell adaptation to hyperglycemia in type 2 diabetes is emphasized and it is likely that treatments based on mTOR inhibition will cause exacerbation of diabetes.
Abstract: OBJECTIVE— Mammalian target of rapamycin (mTOR) and its downstream target S6 kinase 1 (S6K1) mediate nutrient-induced insulin resistance by downregulating insulin receptor substrate proteins with subsequent reduced Akt phosphorylation. Therefore, mTOR/S6K1 inhibition could become a therapeutic strategy in insulin-resistant states, including type 2 diabetes. We tested this hypothesis in the Psammomys obesus ( P. obesus ) model of nutrition-dependent type 2 diabetes, using the mTOR inhibitor rapamycin. RESEARCH DESIGN AND METHODS— Normoglycemic and diabetic P. obesus were treated with 0.2 mg · kg −1 · day −1 i.p. rapamycin or vehicle, and the effects on insulin signaling in muscle, liver and islets, and on different metabolic parameters were analyzed. RESULTS— Unexpectedly, rapamycin worsened hyperglycemia in diabetic P. obesus without affecting glycemia in normoglycemic controls. There was a 10-fold increase of serum insulin in diabetic P. obesus compared with controls; rapamycin completely abolished this increase. This was accompanied by weight loss and a robust increase of serum lipids and ketone bodies. Rapamycin decreased muscle insulin sensitivity paralleled by increased glycogen synthase kinase 3β activity. In diabetic animals, rapamycin reduced β-cell mass by 50% through increased apoptosis. Rapamycin increased the stress-responsive c-Jun NH 2 -terminal kinase pathway in muscle and islets, which could account for its effect on insulin resistance and β-cell apoptosis. Moreover, glucose-stimulated insulin secretion and biosynthesis were impaired in islets treated with rapamycin. CONCLUSIONS— Rapamycin induces fulminant diabetes by increasing insulin resistance and reducing β-cell function and mass. These findings emphasize the essential role of mTOR/S6K1 in orchestrating β-cell adaptation to hyperglycemia in type 2 diabetes. It is likely that treatments based on mTOR inhibition will cause exacerbation of diabetes.

363 citations

Journal ArticleDOI
01 Apr 2013-Diabetes
TL;DR: Rapamycin reduces ER stress induced by accumulation of misfolded proinsulin, thereby improving diabetes and preventing β-cell apoptosis, and the beneficial effects of rapamycin are indeed mediated via inhibition of mTOR.
Abstract: Accumulation of misfolded proinsulin in the β-cell leads to dysfunction induced by endoplasmic reticulum (ER) stress, with diabetes as a consequence. Autophagy helps cellular adaptation to stress via clearance of misfolded proteins and damaged organelles. We studied the effects of proinsulin misfolding on autophagy and the impact of stimulating autophagy on diabetes progression in Akita mice, which carry a mutation in proinsulin, leading to its severe misfolding. Treatment of female diabetic Akita mice with rapamycin improved diabetes, increased pancreatic insulin content, and prevented β-cell apoptosis. In vitro, autophagic flux was increased in Akita β-cells. Treatment with rapamycin further stimulated autophagy, evidenced by increased autophagosome formation and enhancement of autophagosome–lysosome fusion. This was associated with attenuation of cellular stress and apoptosis. The mammalian target of rapamycin (mTOR) kinase inhibitor Torin1 mimicked the rapamycin effects on autophagy and stress, indicating that the beneficial effects of rapamycin are indeed mediated via inhibition of mTOR. Finally, inhibition of autophagy exacerbated stress and abolished the anti-ER stress effects of rapamycin. In conclusion, rapamycin reduces ER stress induced by accumulation of misfolded proinsulin, thereby improving diabetes and preventing β-cell apoptosis. The beneficial effects of rapamycin in this context strictly depend on autophagy; therefore, stimulating autophagy may become a therapeutic approach for diabetes.

174 citations

Journal ArticleDOI
23 Mar 2009-PLOS ONE
TL;DR: It is found that glucose amplifies palmitate-induced ER stress by increasing IRE1α protein levels and activating the JNK pathway, leading to increased β-cell apoptosis, and mTORC1 is an important transducer of ER stress in β- cell glucolipotoxicity.
Abstract: Background Palmitate is a potent inducer of endoplasmic reticulum (ER) stress in β-cells. In type 2 diabetes, glucose amplifies fatty-acid toxicity for pancreatic β-cells, leading to β-cell dysfunction and death. Why glucose exacerbates β-cell lipotoxicity is largely unknown. Glucose stimulates mTORC1, an important nutrient sensor involved in the regulation of cellular stress. Our study tested the hypothesis that glucose augments lipotoxicity by stimulating mTORC1 leading to increased β-cell ER stress.

120 citations

Journal ArticleDOI
TL;DR: DRP1 regulation by AMPK delineates a novel pathway controlling ER and mitochondrial morphology, thereby modulating the response of β-cells to metabolic stress, and may function as a node integrating signals from stress regulators, such as AMPK, to coordinate organelle shape and function.
Abstract: Experimental lipotoxicity constitutes a model for β-cell demise induced by metabolic stress in obesity and type 2 diabetes. Fatty acid excess induces endoplasmic reticulum (ER) stress, which is accompanied by ER morphological changes whose mechanisms and relevance are unknown. We found that the GTPase dynamin-related protein 1 (DRP1), a key regulator of mitochondrial fission, is an ER resident regulating ER morphology in stressed β-cells. Inhibition of DRP1 activity using a GTP hydrolysis-defective mutant (Ad-K38A) attenuated fatty acid-induced ER expansion and mitochondrial fission. Strikingly, stimulating the key energy-sensor AMP-activated protein kinase (AMPK) increased the phosphorylation at the anti-fission site Serine 637 and largely prevented the alterations in ER and mitochondrial morphology. Expression of a DRP1 mutant resistant to phosphorylation at this position partially prevented the recovery of ER and mitochondrial morphology by AMPK. Fatty acid-induced ER enlargement was associated with proinsulin retention in the ER, together with increased proinsulin/insulin ratio. Stimulation of AMPK prevented these alterations, as well as mitochondrial fragmentation and apoptosis. In summary, DRP1 regulation by AMPK delineates a novel pathway controlling ER and mitochondrial morphology, thereby modulating the response of β-cells to metabolic stress. DRP1 may thus function as a node integrating signals from stress regulators, such as AMPK, to coordinate organelle shape and function.

100 citations

Journal ArticleDOI
TL;DR: A fibroblast-free monolayer culture of pancreatic islets from adult rats containing B-cells that retain normal function for long periods is obtained, ideally suited for studying chronic modulations of islet cell function under controlled in vitro conditions.
Abstract: Fragmented islets, obtained by mild overdigestion of the adult rat pancreas with collagenase, readily formed monolayer cultures on dishes coated with extracellular matrix derived from bovine corneal endothelial cells. Contaminating fibroblasts were removed by treatment with sodium ethylmercurithiosalicylate. The cultured islets remained functional for over 6 weeks in primary culture and up to 9 weeks in secondary culture, as indicated by their substantial insulin response to an acute glucose stimulus. Insulin secretion from islet monolayers showed biphasic kinetics. The functional competence of the monolayers was further evaluated by studying glucose-stimulated insulin release in the presence of various modulators of B-cell function. The response to physiological agents such as somatostatin, epinephrine, glucagon, and arginine was retained for at least 4 weeks in culture. The sensitivity to inhibition by somatostatin and epinephrine (ID50 = 10 ng/ml) and that to stimulation by glucagon (ED50 = 3 ng/ml) were similar to or better than those for freshly isolated islets. We have thus obtained a fibroblast-free monolayer culture of pancreatic islets from adult rats containing B-cells that retain normal function for long periods. This experimental system appears ideally suited for studying chronic modulations of islet cell function under controlled in vitro conditions, which can allow the stimulation of normal and diabetic environments.

59 citations


Cited by
More filters
01 Apr 2012
TL;DR: The mechanistic target of rapamycin (mTOR) signaling pathway senses and integrates a variety of environmental cues to regulate organismal growth and homeostasis as mentioned in this paper, and is implicated in an increasing number of pathological conditions, including cancer, obesity, type 2 diabetes, and neurodegeneration.
Abstract: The mechanistic target of rapamycin (mTOR) signaling pathway senses and integrates a variety of environmental cues to regulate organismal growth and homeostasis. The pathway regulates many major cellular processes and is implicated in an increasing number of pathological conditions, including cancer, obesity, type 2 diabetes, and neurodegeneration. Here, we review recent advances in our understanding of the mTOR pathway and its role in health, disease, and aging. We further discuss pharmacological approaches to treat human pathologies linked to mTOR deregulation.

6,268 citations

Journal ArticleDOI
13 Apr 2012-Cell
TL;DR: Recent advances in understanding of the mTOR pathway are reviewed and pharmacological approaches to treat human pathologies linked to mTOR deregulation are discussed.

5,792 citations

Journal Article
01 Jan 2004-Nature
TL;DR: In this article, S6K1-deficient mice are protected against obesity owing to enhanced β-oxidation, but on a high fat diet, levels of glucose and free fatty acids still rise in S6k1-dependent mice, resulting in insulin receptor desensitization.
Abstract: Elucidating the signalling mechanisms by which obesity leads to impaired insulin action is critical in the development of therapeutic strategies for the treatment of diabetes. Recently, mice deficient for S6 Kinase 1 (S6K1), an effector of the mammalian target of rapamycin (mTOR) that acts to integrate nutrient and insulin signals, were shown to be hypoinsulinaemic, glucose intolerant and have reduced β-cell mass. However, S6K1-deficient mice maintain normal glucose levels during fasting, suggesting hypersensitivity to insulin, raising the question of their metabolic fate as a function of age and diet. Here, we report that S6K1-deficient mice are protected against obesity owing to enhanced β-oxidation. However on a high fat diet, levels of glucose and free fatty acids still rise in S6K1-deficient mice, resulting in insulin receptor desensitization. Nevertheless, S6K1-deficient mice remain sensitive to insulin owing to the apparent loss of a negative feedback loop from S6K1 to insulin receptor substrate 1 (IRS1), which blunts S307 and S636/S639 phosphorylation; sites involved in insulin resistance. Moreover, wild-type mice on a high fat diet as well as K/K Ay and ob/ob (also known as Lep/Lep) micetwo genetic models of obesityhave markedly elevated S6K1 activity and, unlike S6K1-deficient mice, increased phosphorylation of IRS1 S307 and S636/S639. Thus under conditions of nutrient satiation S6K1 negatively regulates insulin signalling.

1,408 citations

Journal ArticleDOI
30 Mar 2012-Science
TL;DR: In this article, the authors demonstrate that rapamycin disrupted a second mTOR complex, mTORC2, in vivo and that mTORc2 was required for the insulin-mediated suppression of hepatic gluconeogenesis.
Abstract: Rapamycin, an inhibitor of mechanistic target of rapamycin complex 1 (mTORC1), extends the life spans of yeast, flies, and mice. Calorie restriction, which increases life span and insulin sensitivity, is proposed to function by inhibition of mTORC1, yet paradoxically, chronic administration of rapamycin substantially impairs glucose tolerance and insulin action. We demonstrate that rapamycin disrupted a second mTOR complex, mTORC2, in vivo and that mTORC2 was required for the insulin-mediated suppression of hepatic gluconeogenesis. Further, decreased mTORC1 signaling was sufficient to extend life span independently from changes in glucose homeostasis, as female mice heterozygous for both mTOR and mLST8 exhibited decreased mTORC1 activity and extended life span but had normal glucose tolerance and insulin sensitivity. Thus, mTORC2 disruption is an important mediator of the effects of rapamycin in vivo.

1,012 citations

Journal ArticleDOI
TL;DR: The genetic, environmental, and immunological data underlying the prevention and intervention strategies to constrain T1D are explained, including the efficacy of antigen-specific and antigen-nonspecific immune interventions.
Abstract: Type 1 diabetes (T1D) is a chronic autoimmune disease in which destruction or damaging of the beta-cells in the islets of Langerhans results in insulin deficiency and hyperglycemia. We only know for sure that autoimmunity is the predominant effector mechanism of T1D, but may not be its primary cause. T1D precipitates in genetically susceptible individuals, very likely as a result of an environmental trigger. Current genetic data point towards the following genes as susceptibility genes: HLA, insulin, PTPN22, IL2Ra, and CTLA4. Epidemiological and other studies suggest a triggering role for enteroviruses, while other microorganisms might provide protection. Efficacious prevention of T1D will require detection of the earliest events in the process. So far, autoantibodies are most widely used as serum biomarker, but T-cell readouts and metabolome studies might strengthen and bring forward diagnosis. Current preventive clinical trials mostly focus on environmental triggers. Therapeutic trials test the efficacy of antigen-specific and antigen-nonspecific immune interventions, but also include restoration of the affected beta-cell mass by islet transplantation, neogenesis and regeneration, and combinations thereof. In this comprehensive review, we explain the genetic, environmental, and immunological data underlying the prevention and intervention strategies to constrain T1D.

960 citations