scispace - formally typeset
Search or ask a question
Author

Yaguo Lei

Bio: Yaguo Lei is an academic researcher from Xi'an Jiaotong University. The author has contributed to research in topics: Computer science & Prognostics. The author has an hindex of 49, co-authored 117 publications receiving 12365 citations. Previous affiliations of Yaguo Lei include University of Alberta & Chongqing University.


Papers
More filters
Journal ArticleDOI
TL;DR: This paper attempts to survey and summarize the recent research and development of EMD in fault diagnosis of rotating machinery, providing comprehensive references for researchers concerning with this topic and helping them identify further research topics.

1,410 citations

Journal ArticleDOI
Feng Jia1, Yaguo Lei1, Jing Lin1, Xin Zhou1, Na Lu1 
TL;DR: The diagnosis results show that the proposed method is able to not only adaptively mine available fault characteristics from the measured signals, but also obtain superior diagnosis accuracy compared with the existing methods.

1,289 citations

Journal ArticleDOI
TL;DR: A review and roadmap to systematically cover the development of IFD following the progress of machine learning theories and offer a future perspective is presented.

1,173 citations

Journal ArticleDOI
Yaguo Lei1, Naipeng Li1, Liang Guo1, Ningbo Li1, Tao Yan1, Jing Lin1 
TL;DR: A review on machinery prognostics following its whole program, i.e., from data acquisition to RUL prediction, which provides discussions on current situation, upcoming challenges as well as possible future trends for researchers in this field.

1,116 citations

Journal ArticleDOI
TL;DR: A two-stage learning method inspired by the idea of unsupervised feature learning that uses artificial intelligence techniques to learn features from raw data for intelligent diagnosis of machines that reduces the need of human labor and makes intelligent fault diagnosis handle big data more easily.
Abstract: Intelligent fault diagnosis is a promising tool to deal with mechanical big data due to its ability in rapidly and efficiently processing collected signals and providing accurate diagnosis results. In traditional intelligent diagnosis methods, however, the features are manually extracted depending on prior knowledge and diagnostic expertise. Such processes take advantage of human ingenuity but are time-consuming and labor-intensive. Inspired by the idea of unsupervised feature learning that uses artificial intelligence techniques to learn features from raw data, a two-stage learning method is proposed for intelligent diagnosis of machines. In the first learning stage of the method, sparse filtering, an unsupervised two-layer neural network, is used to directly learn features from mechanical vibration signals. In the second stage, softmax regression is employed to classify the health conditions based on the learned features. The proposed method is validated by a motor bearing dataset and a locomotive bearing dataset, respectively. The results show that the proposed method obtains fairly high diagnosis accuracies and is superior to the existing methods for the motor bearing dataset. Because of learning features adaptively, the proposed method reduces the need of human labor and makes intelligent fault diagnosis handle big data more easily.

915 citations


Cited by
More filters
Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

Journal ArticleDOI
TL;DR: The effect of the added white noise is to provide a uniform reference frame in the time–frequency space; therefore, the added noise collates the portion of the signal of comparable scale in one IMF.
Abstract: A new Ensemble Empirical Mode Decomposition (EEMD) is presented. This new approach consists of sifting an ensemble of white noise-added signal (data) and treats the mean as the final true result. Finite, not infinitesimal, amplitude white noise is necessary to force the ensemble to exhaust all possible solutions in the sifting process, thus making the different scale signals to collate in the proper intrinsic mode functions (IMF) dictated by the dyadic filter banks. As EEMD is a time–space analysis method, the added white noise is averaged out with sufficient number of trials; the only persistent part that survives the averaging process is the component of the signal (original data), which is then treated as the true and more physical meaningful answer. The effect of the added white noise is to provide a uniform reference frame in the time–frequency space; therefore, the added noise collates the portion of the signal of comparable scale in one IMF. With this ensemble mean, one can separate scales naturall...

6,437 citations

Journal ArticleDOI
TL;DR: The applications of deep learning in machine health monitoring systems are reviewed mainly from the following aspects: Auto-encoder and its variants, Restricted Boltzmann Machines, Convolutional Neural Networks, and Recurrent Neural Networks.

1,569 citations

Journal ArticleDOI
TL;DR: This paper attempts to survey and summarize the recent research and development of EMD in fault diagnosis of rotating machinery, providing comprehensive references for researchers concerning with this topic and helping them identify further research topics.

1,410 citations