scispace - formally typeset
Search or ask a question
Author

Yair Rivenson

Bio: Yair Rivenson is an academic researcher from University of California, Los Angeles. The author has contributed to research in topics: Holography & Deep learning. The author has an hindex of 38, co-authored 181 publications receiving 6503 citations. Previous affiliations of Yair Rivenson include California NanoSystems Institute & Ben-Gurion University of the Negev.


Papers
More filters
Journal ArticleDOI
07 Sep 2018-Science
TL;DR: 3D-printed D2NNs are created that implement classification of images of handwritten digits and fashion products, as well as the function of an imaging lens at a terahertz spectrum.
Abstract: Deep learning has been transforming our ability to execute advanced inference tasks using computers. Here we introduce a physical mechanism to perform machine learning by demonstrating an all-optical diffractive deep neural network (D2NN) architecture that can implement various functions following the deep learning-based design of passive diffractive layers that work collectively. We created 3D-printed D2NNs that implement classification of images of handwritten digits and fashion products, as well as the function of an imaging lens at a terahertz spectrum. Our all-optical deep learning framework can perform, at the speed of light, various complex functions that computer-based neural networks can execute; will find applications in all-optical image analysis, feature detection, and object classification; and will also enable new camera designs and optical components that perform distinctive tasks using D2NNs.

1,145 citations

Journal ArticleDOI
TL;DR: It is demonstrated that a neural network can learn to perform phase recovery and holographic image reconstruction after appropriate training, and this deep learning-based approach provides an entirely new framework to conduct holographic imaging by rapidly eliminating twin-image and self-interference-related spatial artifacts.
Abstract: Phase recovery from intensity-only measurements forms the heart of coherent imaging techniques and holography. In this study, we demonstrate that a neural network can learn to perform phase recovery and holographic image reconstruction after appropriate training. This deep learning-based approach provides an entirely new framework to conduct holographic imaging by rapidly eliminating twin-image and self-interference-related spatial artifacts. This neural network-based method is fast to compute and reconstructs phase and amplitude images of the objects using only one hologram, requiring fewer measurements in addition to being computationally faster. We validated this method by reconstructing the phase and amplitude images of various samples, including blood and Pap smears and tissue sections. These results highlight that challenging problems in imaging science can be overcome through machine learning, providing new avenues to design powerful computational imaging systems.

684 citations

Journal ArticleDOI
TL;DR: This data-driven approach does not require numerical modeling of the imaging process or the estimation of a point-spread-function, and is based on training a generative adversarial network to transform diffraction-limited input images into super-resolved ones, and could serve to democratize super-resolution imaging.
Abstract: We present deep-learning-enabled super-resolution across different fluorescence microscopy modalities. This data-driven approach does not require numerical modeling of the imaging process or the estimation of a point-spread-function, and is based on training a generative adversarial network (GAN) to transform diffraction-limited input images into super-resolved ones. Using this framework, we improve the resolution of wide-field images acquired with low-numerical-aperture objectives, matching the resolution that is acquired using high-numerical-aperture objectives. We also demonstrate cross-modality super-resolution, transforming confocal microscopy images to match the resolution acquired with a stimulated emission depletion (STED) microscope. We further demonstrate that total internal reflection fluorescence (TIRF) microscopy images of subcellular structures within cells and tissues can be transformed to match the results obtained with a TIRF-based structured illumination microscope. The deep network rapidly outputs these super-resolved images, without any iterations or parameter search, and could serve to democratize super-resolution imaging.

552 citations

Journal ArticleDOI
TL;DR: It is demonstrated that a deep neural network can significantly improve optical microscopy, enhancing its spatial resolution over a large field-of-view and depth of field, and can be used to design computational imagers that get better and better as they continue to image specimen and establish new transformations among different modes of imaging.
Abstract: We demonstrate that a deep neural network can significantly improve optical microscopy, enhancing its spatial resolution over a large field-of-view and depth-of-field. After its training, the only input to this network is an image acquired using a regular optical microscope, without any changes to its design. We blindly tested this deep learning approach using various tissue samples that are imaged with low-resolution and wide-field systems, where the network rapidly outputs an image with remarkably better resolution, matching the performance of higher numerical aperture lenses, also significantly surpassing their limited field-of-view and depth-of-field. These results are transformative for various fields that use microscopy tools, including e.g., life sciences, where optical microscopy is considered as one of the most widely used and deployed techniques. Beyond such applications, our presented approach is broadly applicable to other imaging modalities, also spanning different parts of the electromagnetic spectrum, and can be used to design computational imagers that get better and better as they continue to image specimen and establish new transformations among different modes of imaging.

428 citations

Journal ArticleDOI
20 Nov 2017
TL;DR: In this paper, a deep neural network was used to improve optical microscopy, enhancing its spatial resolution over a large field of view and depth of field. But, the only input to this network is an image acquired using a regular optical microscope, without any changes to its design.
Abstract: We demonstrate that a deep neural network can significantly improve optical microscopy, enhancing its spatial resolution over a large field of view and depth of field. After its training, the only input to this network is an image acquired using a regular optical microscope, without any changes to its design. We blindly tested this deep learning approach using various tissue samples that are imaged with low-resolution and wide-field systems, where the network rapidly outputs an image with better resolution, matching the performance of higher numerical aperture lenses and also significantly surpassing their limited field of view and depth of field. These results are significant for various fields that use microscopy tools, including, e.g., life sciences, where optical microscopy is considered as one of the most widely used and deployed techniques. Beyond such applications, the presented approach might be applicable to other imaging modalities, also spanning different parts of the electromagnetic spectrum, and can be used to design computational imagers that get better as they continue to image specimens and establish new transformations among different modes of imaging.

377 citations


Cited by
More filters
01 Jan 2016
TL;DR: In this paper, the authors present the principles of optics electromagnetic theory of propagation interference and diffraction of light, which can be used to find a good book with a cup of coffee in the afternoon, instead of facing with some infectious bugs inside their computer.
Abstract: Thank you for reading principles of optics electromagnetic theory of propagation interference and diffraction of light. As you may know, people have search hundreds times for their favorite novels like this principles of optics electromagnetic theory of propagation interference and diffraction of light, but end up in harmful downloads. Rather than enjoying a good book with a cup of coffee in the afternoon, instead they are facing with some infectious bugs inside their computer.

2,213 citations

Journal ArticleDOI
TL;DR: This article reviews in a selective way the recent research on the interface between machine learning and the physical sciences, including conceptual developments in ML motivated by physical insights, applications of machine learning techniques to several domains in physics, and cross fertilization between the two fields.
Abstract: Machine learning (ML) encompasses a broad range of algorithms and modeling tools used for a vast array of data processing tasks, which has entered most scientific disciplines in recent years. This article reviews in a selective way the recent research on the interface between machine learning and the physical sciences. This includes conceptual developments in ML motivated by physical insights, applications of machine learning techniques to several domains in physics, and cross fertilization between the two fields. After giving a basic notion of machine learning methods and principles, examples are described of how statistical physics is used to understand methods in ML. This review then describes applications of ML methods in particle physics and cosmology, quantum many-body physics, quantum computing, and chemical and material physics. Research and development into novel computing architectures aimed at accelerating ML are also highlighted. Each of the sections describe recent successes as well as domain-specific methodology and challenges.

1,504 citations

Journal Article
TL;DR: In this article, the diffraction tomography theorem is adapted to one-dimensional length measurement and the resulting spectral interferometry technique is described and the first length measurements using this technique on a model eye and on a human eye in vivo are presented.
Abstract: The diffraction tomography theorem is adapted to one-dimensional length measurement. The resulting spectral interferometry technique is described and the first length measurements using this technique on a model eye and on a human eye in vivo are presented.

1,237 citations

Journal ArticleDOI
07 Sep 2018-Science
TL;DR: 3D-printed D2NNs are created that implement classification of images of handwritten digits and fashion products, as well as the function of an imaging lens at a terahertz spectrum.
Abstract: Deep learning has been transforming our ability to execute advanced inference tasks using computers. Here we introduce a physical mechanism to perform machine learning by demonstrating an all-optical diffractive deep neural network (D2NN) architecture that can implement various functions following the deep learning-based design of passive diffractive layers that work collectively. We created 3D-printed D2NNs that implement classification of images of handwritten digits and fashion products, as well as the function of an imaging lens at a terahertz spectrum. Our all-optical deep learning framework can perform, at the speed of light, various complex functions that computer-based neural networks can execute; will find applications in all-optical image analysis, feature detection, and object classification; and will also enable new camera designs and optical components that perform distinctive tasks using D2NNs.

1,145 citations