scispace - formally typeset
Search or ask a question
Author

Yair Shachar-Hill

Bio: Yair Shachar-Hill is an academic researcher from Michigan State University. The author has contributed to research in topics: Metabolic flux analysis & Mycorrhiza. The author has an hindex of 59, co-authored 105 publications receiving 11179 citations. Previous affiliations of Yair Shachar-Hill include Yale University & United States Department of Agriculture.


Papers
More filters
Journal ArticleDOI
09 Jun 2005-Nature
TL;DR: Results of stable isotope labelling experiments are reported showing that inorganic nitrogen taken up by the fungus outside the roots is incorporated into amino acids, translocated from the extraradical to the intraradical mycelium as arginine, but transferred to the plant without carbon.
Abstract: The discovery of a previously unknown mechanism of nitrogen transfer from the arbuscular mycorrhizal fungi found on the roots of most land plants, to the host plants suggests that this symbiotic relationship may be a much more important factor in the global nitrogen cycle than was thought. The mechanism involves uptake of inorganic nitrogen by the fungus outside the roots, conversion to amino acids within the fungus, then transfer as ammonium ions from the fungal mycelium into the plant. The first event in host recognition by arbuscular mycorrhizal fungi is thought to be hyphal branching. A strigolactone, 5-deoxy-strigol, isolated from Lotus japonicus has now been identified as an inducer of branching. Strigolactones are root metabolites, previously isolated as seed germination stimulants for root parasitic weeds. This finding highlights the close relationship between plant and fungus, and may provide a new strategy for the control of both beneficial fungal symbionts and destructive parasitic weeds in agriculture and natural ecosystems. Most land plants are symbiotic with arbuscular mycorrhizal fungi (AMF), which take up mineral nutrients from the soil and exchange them with plants for photosynthetically fixed carbon. This exchange is a significant factor in global nutrient cycles1 as well as in the ecology2, evolution3 and physiology4 of plants. Despite its importance as a nutrient, very little is known about how AMF take up nitrogen and transfer it to their host plants5. Here we report the results of stable isotope labelling experiments showing that inorganic nitrogen taken up by the fungus outside the roots is incorporated into amino acids, translocated from the extraradical to the intraradical mycelium as arginine, but transferred to the plant without carbon. Consistent with this mechanism, the genes of primary nitrogen assimilation are preferentially expressed in the extraradical tissues, whereas genes associated with arginine breakdown are more highly expressed in the intraradical mycelium. Strong changes in the expression of these genes in response to nitrogen availability and form also support the operation of this novel metabolic pathway in the arbuscular mycorrhizal symbiosis.

917 citations

Journal ArticleDOI
TL;DR: The genome of Rhizophagus irregularis provides insight into genes involved in obligate biotrophy and mycorrhizal symbioses and the evolution of an ancient asexual organism, and is of fundamental importance to the field of genome evolution.
Abstract: The mutualistic symbiosis involving Glomeromycota, a distinctive phylum of early diverging Fungi, is widely hypothesized to have promoted the evolution of land plants during the middle Paleozoic. These arbuscular mycorrhizal fungi (AMF) perform vital functions in the phosphorus cycle that are fundamental to sustainable crop plant productivity. The unusual biological features of AMF have long fascinated evolutionary biologists. The coenocytic hyphae host a community of hundreds of nuclei and reproduce clonally through large multinucleated spores. It has been suggested that the AMF maintain a stable assemblage of several different genomes during the life cycle, but this genomic organization has been questioned. Here we introduce the 153-Mb haploid genome of Rhizophagus irregularis and its repertoire of 28,232 genes. The observed low level of genome polymorphism (0.43 SNP per kb) is not consistent with the occurrence of multiple, highly diverged genomes. The expansion of mating-related genes suggests the existence of cryptic sex-related processes. A comparison of gene categories confirms that R. irregularis is close to the Mucoromycotina. The AMF obligate biotrophy is not explained by genome erosion or any related loss of metabolic complexity in central metabolism, but is marked by a lack of genes encoding plant cell wall-degrading enzymes and of genes involved in toxin and thiamine synthesis. A battery of mycorrhiza-induced secreted proteins is expressed in symbiotic tissues. The present comprehensive repertoire of R. irregularis genes provides a basis for future research on symbiosis-related mechanisms in Glomeromycota.

621 citations

Journal ArticleDOI
TL;DR: Colonization of the land by plants some 400 million years ago was associated with the colonization of their primitive roots by soil-borne filamentous fungi, and today, 90% to 95% of land plants still maintain some type of primitive root system.
Abstract: Colonization of the land by plants some 400 million years ago was associated with the colonization of their primitive roots by soil-borne filamentous fungi ([Nicolson, 1975][1];[Simon et al., 1993][2]; [Taylor et al., 1995][3]). Today, 90% to 95% of land plants still maintain some type of

510 citations

Journal ArticleDOI
TL;DR: Comparative global analysis of transcripts under induced and noninduced conditions was applied as a first approach to studying molecular changes that promote or accompany triacylglycerol accumulation in cells encountering a new nutrient environment, and conclusions on metabolism based on transcriptional analysis are indirect.
Abstract: Like many microalgae, Chlamydomonas reinhardtii forms lipid droplets rich in triacylglycerols when nutrient deprived. To begin studying the mechanisms underlying this process, nitrogen (N) deprivation was used to induce triacylglycerol accumulation and changes in developmental programs such as gametogenesis. Comparative global analysis of transcripts under induced and noninduced conditions was applied as a first approach to studying molecular changes that promote or accompany triacylglycerol accumulation in cells encountering a new nutrient environment. Towards this goal, high-throughput sequencing technology was employed to generate large numbers of expressed sequence tags of eight biologically independent libraries, four for each condition, N replete and N deprived, allowing a statistically sound comparison of expression levels under the two tested conditions. As expected, N deprivation activated a subset of control genes involved in gametogenesis while down-regulating protein biosynthesis. Genes for components of photosynthesis were also down-regulated, with the exception of the PSBS gene. N deprivation led to a marked redirection of metabolism: the primary carbon source, acetate, was no longer converted to cell building blocks by the glyoxylate cycle and gluconeogenesis but funneled directly into fatty acid biosynthesis. Additional fatty acids may be produced by membrane remodeling, a process that is suggested by the changes observed in transcript abundance of putative lipase genes. Inferences on metabolism based on transcriptional analysis are indirect, but biochemical experiments supported some of these deductions. The data provided here represent a rich source for the exploration of the mechanism of oil accumulation in microalgae.

492 citations

Journal ArticleDOI
09 Dec 2004-Nature
TL;DR: In developing embryos of Brassica napus L. (oilseed rape), Rubisco (ribulose 1,5-bisphosphate carboxylase/oxygenase) acts without the Calvin cycle and in a previously undescribed metabolic context to increase the efficiency of carbon use during the formation of oil.
Abstract: Efficient storage of carbon in seeds is crucial to plant fitness and to agricultural productivity. Oil is a major reserve material in most seeds1, and these oils provide the largest source of renewable reduced carbon chains available from nature. However, the conversion of carbohydrate to oil through glycolysis results in the loss of one-third of the carbon as CO2. Here we show that, in developing embryos of Brassica napus L. (oilseed rape), Rubisco (ribulose 1,5-bisphosphate carboxylase/oxygenase) acts without the Calvin cycle2 and in a previously undescribed metabolic context to increase the efficiency of carbon use during the formation of oil. In comparison with glycolysis, the metabolic conversion we describe provides 20% more acetyl-CoA for fatty-acid synthesis and results in 40% less loss of carbon as CO2. Our conclusions are based on measurements of mass balance, enzyme activity and stable isotope labelling, as well as an analysis of elementary flux modes.

439 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this review article, numerous examples of successful application of these compounds to improve plant stress tolerance are presented and a better understanding of the mechanisms of action of exogenously applied GB and proline is expected to aid their effective utilization in crop production in stress environments.

3,847 citations

Journal ArticleDOI
TL;DR: Recent advances in elucidating the role of root exudates in interactions between plant roots and other plants, microbes, and nematodes present in the rhizosphere are described.
Abstract: The rhizosphere encompasses the millimeters of soil surrounding a plant root where complex biological and ecological processes occur. This review describes recent advances in elucidating the role of root exudates in interactions between plant roots and other plants, microbes, and nematodes present in the rhizosphere. Evidence indicating that root exudates may take part in the signaling events that initiate the execution of these interactions is also presented. Various positive and negative plant-plant and plant-microbe interactions are highlighted and described from the molecular to the ecosystem scale. Furthermore, methodologies to address these interactions under laboratory conditions are presented.

3,674 citations

Journal ArticleDOI
TL;DR: The responses of plants to salt and water stress are described, the regulatory circuits which allow plants to cope with stress are presented, and how the present knowledge can be applied to obtain tolerant plants is discussed.
Abstract: Agricultural productivity worldwide is subject to increasing environmental constraints, particularly to drought and salinity due to their high magnitude of impact and wide distribution. Traditional breeding programs trying to improve abiotic stress tolerance have had some success, but are limited by the multigenic nature of the trait. Tolerant plants such as Craterostigma plantagenium, Mesembryanthemum crystallinum, Thellungiella halophila and other hardy plants could be valuable tools to dissect the extreme tolerance nature. In the last decade, Arabidopsis thaliana, a genetic model plant, has been extensively used for unravelling the molecular basis of stress tolerance. Arabidopsis also proved to be extremely important for assessing functions for individual stress-associated genes due to the availability of knock-out mutants and its amenability for genetic transformation. In this review, the responses of plants to salt and water stress are described, the regulatory circuits which allow plants to cope wit...

2,351 citations