scispace - formally typeset
Search or ask a question
Author

Yajuan Fu

Bio: Yajuan Fu is an academic researcher from Chinese Academy of Sciences. The author has contributed to research in topics: Bacillus thuringiensis & Genome. The author has an hindex of 2, co-authored 7 publications receiving 28 citations.

Papers
More filters
Journal ArticleDOI
25 Apr 2019-Viruses
TL;DR: The functional analysis of the putative complete prophage proteins indicated that some proteins, such as antibiotic resistance-associated proteins and restriction endonucleases, might increase the fitness of the Bt strains to different environments.
Abstract: Bacillus thuringiensis (Bt) is widely used in producing biological insecticides. Phage contaminations during Bt fermentation can cause severe losses of yields. Lots of strategies have been engaged to control extrinsic phage contamination during Bt fermentation, but their effectiveness is low. In this study, the candidate endogenous prophages (prophages) in 61 Bt chromosomes that had been deposited in GenBank database were analyzed. The results revealed that all chromosomes contained prophage regions, and 398 candidate prophage regions were predicted, including 135 putative complete prophages and 263 incomplete prophage regions. These putative complete prophages showed highly diverse genetic backgrounds. The inducibility of the prophages of ten Bt strains (4AJ1, 4BD1, HD-1, HD-29, HD-73, HD-521, BMB171, 4CC1, CT-43, and HD-1011) was tested, and the results showed that seven of the ten strains’ prophages were inducible. These induced phages belonged to the Siphoviridae family and exhibited a broad host spectrum against the non-original strains. The culture supernatants of the two strains (BMB171, 4CC1) could lyse Bt cells, but no virions were observed, which was speculated to be caused by lysin. The functional analysis of the putative complete prophage proteins indicated that some proteins, such as antibiotic resistance-associated proteins and restriction endonucleases, might increase the fitness of the Bt strains to different environments. The findings of this study provided understanding on the high prevalence and diversity of Bt prophages, as well as pointed out the role of prophages in the life cycle of Bt.

16 citations

Journal ArticleDOI
06 Nov 2018-Viruses
TL;DR: The novel genome sequence, the distant evolutionary relationship, and the special virion morphology together suggest that the phage vB_BthS_BMBphi could be classified as a new phage lineage.
Abstract: Phages, the parasites of bacteria, are considered as a new kind of antimicrobial agent due to their ability to lyse pathogenic bacteria. Due to the increase of available phage isolates, the newly isolated phage showed increasing genomic similarities with previously isolated phages. In this study, the novel phage vB_BthS_BMBphi, infecting the Bacillus thuringiensis strain BMB171, is isolated and characterized together with its endolysin. This phage is the first tadpole-like phage infecting the Bacillus strains. Genomic analysis shows that the phage genome is dissimilar to all those of previously characterized phages, only exhibiting low similarities with partial regions of the B. thuringiensis prophages. Phylogenetic analysis revealed that the phage was distant from the other Bacillus phages in terms of evolution. The novel genome sequence, the distant evolutionary relationship, and the special virion morphology together suggest that the phage vB_BthS_BMBphi could be classified as a new phage lineage. The genome of the phage is found to contain a restriction modification system, which might endow the phage with immunity to the restriction modification system of the host bacterium. The function of the endolysin PlyBMB encoded by the phage vB_BthS_BMBphi was analyzed, and the endolysin could lyse all the tested Bacillus cereus group strains, suggesting that the endolysin might be used in controlling pathogenic B. cereus group strains. The findings of this study enrich the understanding of phage diversity and provide a resource for controlling the B. cereus group pathogenic bacteria.

13 citations

Journal ArticleDOI
31 May 2021-Viruses
TL;DR: In this article, the authors characterized a newly isolated Myoviridae phage, vB_EcoM_APEC, which was able to infect E. coli APEC O78.
Abstract: Due to the increasing spread of multidrug-resistant (MDR) bacteria, phage therapy is considered one of the most promising methods for addressing MDR bacteria. Escherichia coli lives symbiotically in the intestines of humans and some animals, and most strains are beneficial in terms of maintaining a healthy digestive tract. However, some E. coli strains can cause serious zoonotic diseases, including diarrhea, pneumonia, urinary tract infections, and hemolytic uremic syndrome. In this study, we characterized a newly isolated Myoviridae phage, vB_EcoM_APEC. The phage vB_EcoM_APEC was able to infect E. coli APEC O78, which is the most common MDR E. coli serotype in turkeys. Additionally, the phage's host range included Klebsiella pneumoniae and other E. coli strains. The genome of phage vB_EcoM_APEC (GenBank accession number MT664721) was 35,832 bp in length, with 52 putative open reading frames (ORFs) and a GC content of 41.3%. The genome of vB_EcoM_APEC exhibited low similarity (79.1% identity and 4.0% coverage) to the genome of Acinetobacter phage vB_AbaM_IME284 (GenBank no. MH853787.1) according to the nucleotide Basic Local Alignment Search Tool (BLASTn). Phylogenetic analysis revealed that vB_EcoM_APEC was a novel phage, and its genome sequence showed low similarity to other available phage genomes. Gene annotation indicated that the protein encoded by orf11 was an endolysin designated as LysO78, which exhibited 64.7% identity (91.0% coverage) with the putative endolysin of Acinetobacter baumannii phage vB_AbaM_B9. The LysO78 protein belongs to glycoside hydrolase family 19, and was described as being a chitinase class I protein. LysO78 is a helical protein with 12 α-helices containing a large domain and a small domain in terms of the predicted three-dimensional structure. The results of site-directed mutagenesis indicated that LysO78 contained the catalytic residues E54 and E64. The purified endolysin exhibited broad-spectrum bacteriolytic activity against Gram-negative strains, including the genera Klebsiella, Salmonella, Shigella, Burkholderia, Yersinia, and Pseudomonas, as well as the species Chitinimonas arctica, E. coli, Ralstonia solanacearum, and A. baumannii. An enzymatic assay showed that LysO78 had highly lytic peptidoglycan hydrolases activity (64,620,000 units/mg) against E. coli APEC O78, and that LysO78 had lytic activity in the temperature range of 4-85 °C, with an optimal temperature of 28 °C and optimal pH of 8.0, and was active at pH 3.0-12.0. Overall, the results suggested that LysO78 might be a promising therapeutic agent for controlling MDR E. coli APEC O78 and nosocomial infections caused by multidrug-resistant bacteria.

4 citations

Journal ArticleDOI
TL;DR: The complete genome sequence of B. thuringiensis serovar rongseni reference strain SCG04-02, which is toxic to Plutella xylostella, is reported.
Abstract: Bacillus thuringiensis (Bt) is widely used to control agricultural and forestry pests, though there are only a few available complete genome sequences of the Bt reference strain. Here, we report the complete genome sequence of B. thuringiensis serovar rongseni reference strain SCG04-02, which is toxic to Plutella xylostella.

3 citations

Journal ArticleDOI
TL;DR: Ply67 is a novel spore lytic enzyme that differs from other GSLEs not only in amino acid sequence but also in activity against spores, and Ply67 might have the potential to kill spores of pathogenic Bacillus species, e.g., B. cereus and B. anthracis.

3 citations


Cited by
More filters
01 Jun 2012
TL;DR: SPAdes as mentioned in this paper is a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler and on popular assemblers Velvet and SoapDeNovo (for multicell data).
Abstract: The lion's share of bacteria in various environments cannot be cloned in the laboratory and thus cannot be sequenced using existing technologies. A major goal of single-cell genomics is to complement gene-centric metagenomic data with whole-genome assemblies of uncultivated organisms. Assembly of single-cell data is challenging because of highly non-uniform read coverage as well as elevated levels of sequencing errors and chimeric reads. We describe SPAdes, a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler (specialized for single-cell data) and on popular assemblers Velvet and SoapDeNovo (for multicell data). SPAdes generates single-cell assemblies, providing information about genomes of uncultivatable bacteria that vastly exceeds what may be obtained via traditional metagenomics studies. SPAdes is available online ( http://bioinf.spbau.ru/spades ). It is distributed as open source software.

10,124 citations

Journal Article
TL;DR: Cry protein is completely different from conventional chemical pesticides that have made Cry Protein a core component of advanced natural insect resistance and predatory patterns.
Abstract: Bacillus thuringiensis, a leading biorational pesticide in the parasporal cycle, is considered to be a valuable source of commercially effective biopesticide for various isolates and subspecies at the stationary stage of its growth cycle. Control of some species of insecticide between Lepidoptera, Diptera, and Coleoptera. Blends should have the lowest resemblance toxins and a variety of action mechanisms, as their activity is the highest. Cry protein is completely different from conventional chemical pesticides that have made Cry Protein a core component of advanced natural insect resistance and predatory patterns.

74 citations

Journal Article
TL;DR: There is something fascinating about science, one gets such wholesale returns of conjecture out of such a trifling investment of fact as to make one wonder about the nature of science.
Abstract: There is something fascinating about science. One gets such wholesale returns of conjecture out of such a trifling investment of fact. Mark Twain 1883 Life on the Mississippi

43 citations

Journal ArticleDOI
TL;DR: In this article, the authors demonstrate that Bacillus thuringiensis RZ2MS9 harbours the complete set of genes required in two pathways that are used for Indole acetic acid (IAA) production.
Abstract: Strains of Bacillus thuringiensis (Bt) are commonly commercialized as bioinoculants for insect pest control, but their benefits go beyond their insecticidal property: they can act as plant growth-promoters. Auxins play a major role in the plant growth promotion. However, the mechanism of auxin production by the Bacilli group, and more specifically by Bt strains, is unclear. In previous work, the plant growth-promoting rhizobacterium (PGPR) B. thuringiensis strain RZ2MS9 increased the corn roots. This drew our attention to the strain's auxin production trait, earlier detected in vitro. Here, we demonstrate that in its genome, RZ2MS9 harbours the complete set of genes required in two pathways that are used for Indole acetic acid (IAA) production. We also detected that the strain produces almost five times more IAA during the stationary phase. The bacterial application increased the shoot dry weight of the Micro-Tom (MT) tomato by 24%. The application also modified MT root architecture, with an increase of 26% in the average lateral root length and inhibition of the axial root. At the cellular level, RZ2MS9-treated MT plants presented elongated root cortical cells with intensified mitotic activity. Altogether, these are the best characterized auxin-associated phenotypes. Besides that, no growth alteration was detected in the auxin-insensitive diageotropic (dgt) plants either with or without the RZ2MS9 inoculation. Our results suggest that auxins play an important role in the ability of B. thuringiensis RZ2MS9 to promote MT growth and provide a better understanding of the auxin production mechanism by a Bt strain.

35 citations

Journal ArticleDOI
TL;DR: This review comprehensively introduces the structures and activities of endolysins and summarize the latest application progress of recombinant endolySins in the fields of medical treatment, pathogen diagnosis, food safety, and agriculture.
Abstract: Antimicrobial resistance (AMR) is a global crisis for human public health which threatens the effective prevention and control of ever-increasing infectious diseases. The advent of pandrug-resistant bacteria makes most, if not all, available antibiotics invalid. Meanwhile, the pipeline of novel antibiotics development stagnates, which prompts scientists and pharmacists to develop unconventional antimicrobials. Bacteriophage-derived endolysins are cell wall hydrolases which could hydrolyze the peptidoglycan layer from within and outside of bacterial pathogens. With high specificity, rapid action, high efficiency, and low risk of resistance development, endolysins are believed to be among the best alternative therapeutic agents to treat multidrug resistant (MDR) bacteria. As of now, endolysins have been applied to diverse aspects. In this review, we comprehensively introduce the structures and activities of endolysins and summarize the latest application progress of recombinant endolysins in the fields of medical treatment, pathogen diagnosis, food safety, and agriculture.

31 citations