scispace - formally typeset
Search or ask a question
Author

Yajun Yun

Bio: Yajun Yun is an academic researcher from Peking University. The author has contributed to research in topics: Medicine & Major depressive disorder. The author has an hindex of 1, co-authored 2 publications receiving 2 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors performed 16S rRNA sequencing of stool samples from 36 patients with major depressive disorder and 45 healthy controls (HC) and found that six microbiota targets were associated with the severity of depression, 11 with sleep quality, and 3 with sleep severity.
Abstract: The microbiota-gut-brain axis plays a critical role in the pathogenesis of major depressive disorder (MDD) and related subclinical symptoms. However, studies on the gut microbiota in MDD are inconsistent, and data on MDD's effects on sleep are lacking. This study aimed to analyze the gut microbiota composition and sleep quality of patients with MDD. We performed 16S rRNA sequencing of stool samples from 36 patients with MDD and 45 healthy controls (HC). Sleep quality was assessed using the Pittsburgh Sleep Quality Index, depressive severity with the Hamilton Depression Scale, and insomnia severity using the Insomnia Severity Index. Forty-eight microbiota targets showed significant differences between MDD and HC. In MDD, six microbiota targets were associated with the severity of depression, 11 with sleep quality, and 3 with sleep severity. At the genus level, Dorea was simultaneously related to depression and sleep quality, while Intestinibacter was more closely related to sleep problems. Coprococcus and Intestinibacter were associated with sleep quality independent of the severity of depression. In conclusion, the present findings enable a better understanding of the relationship between gut microbiota and MDD-related symptoms. Gut microbiota alterations may become potential biomarkers and/or treatment targets for sleep quality in MDD.

24 citations

Journal ArticleDOI
TL;DR: Wang et al. as discussed by the authors explored the gut microbiome composition and daytime dysfunction in Chinese patients with major depressive disorder (MDD) and 45 healthy controls (HCs) matched by age, sex, and body mass index (BMI).

3 citations

Journal ArticleDOI
TL;DR: Wang et al. as discussed by the authors evaluated the effect of high-dose betahistine on cognitive function as well as its safety in Chinese Han patients with schizophrenia and found that the Betahistine treatment was well tolerated by Chinese patients and showed significant improvements in MCCB composite score after 12 weeks of treatment.
Abstract: Background: There is currently no effective treatment for cognitive impairment associated with schizophrenia (CIAS). Recent studies have shown that increased histamine levels in the brain may help to improve CIAS symptoms. Betahistine is an H1-receptor agonist and H3-receptor antagonist. This study evaluated the effect of high-dose betahistine on cognitive function as well as its safety in Chinese Han patients with schizophrenia. Methods: This randomized double-blind, placebo-controlled trial enrolled 89 patients with schizophrenia who were randomly administered betahistine (72 mg/d) or placebo for 12 weeks. At baseline and at 4, 8, and 12 weeks after commencing the intervention, we measured changes in cognitive function and clinical symptoms using the MATRICS Consensus Cognitive Battery (MCCB) and Positive and Negative Syndrome Scale (PANSS), respectively. Furthermore, we used the Treatment Emergent Symptom Scale (TESS) to assess the adverse effects of the patients' medications. Results: Compared to the placebo group, the betahistine group showed significant improvements in the MCCB composite score after 12 weeks of treatment (p = 0.003) as well as improvements in MCCB verbal learning (p = 0.02) and visual learning (p = 0.001) domain scores. However, there were no significant improvements in the PANSS total scores or subscores (p > 0.05). Generally, high-dose betahistine treatment was considered safe in patients with schizophrenia. Conclusions: Additional use of high-dose betahistine can effectively improve cognitive function but not psychiatric symptoms in patients with schizophrenia. Betahistine (72 mg/d) is well tolerated by Chinese Han patients with schizophrenia. Trial Registration: chictr.org.cn, identifier: ChiCTR1900021078. http://www.chictr.org.cn/edit.aspx?pid=35484&htm=4.

2 citations

Journal ArticleDOI
TL;DR: Results demonstrate that OLA and its metabolite DMO might have a counteracting effects on glucose-insulin homeostasis and lipid metabolic abnormalities, which suggests that regular measure of various metabolic parameters and drug monitoring on both O LA and DMO are recommended in OLA-treated patients with schizophrenia.
Abstract: Objectives The aim of the present study was to investigate a potential relationship between metabolic parameters and steady-state plasma concentrations of olanzapine (OLA) and its metabolite, 4-N'-desmethyl-olanzapine (DMO) in patients with schizophrenia taking therapeutic doses. Methods A total of 352 inpatients, diagnosed with schizophrenia according to the DSM-V criteria and treated with OLA, were investigated. The plasma concentrations of OLA and DMO were measured by high-performance liquid chromatography-mass spectrometry (HPLC-MS/MS). Fasting blood samples were measured for insulin, glucose, total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL-c), low-density lipoprotein cholesterol (LDL-c), C-reactive protein (CRP) and homocysteine, and differences in these parameters were investigated in relation to plasma concentrations of OLA and DMO. Results Lower plasma DMO concentrations were associated with higher glucose and TG levels and homeostasis model assessment of insulin resistance (HOMA-IR), while higher plasma OLA concentrations were associated with higher CRP and homocysteine levels in the OLA-treated patients with schizophrenia. Conclusion These results demonstrate that OLA and its metabolite DMO may have different effects on OLA-induced metabolic abnormalities. DMO might have a counteracting effects on glucose-insulin homeostasis and lipid metabolic abnormalities, which suggests that regular measure of various metabolic parameters and drug monitoring on both OLA and DMO are recommended in OLA-treated patients with schizophrenia.

2 citations

Journal ArticleDOI
TL;DR: In this paper , the authors investigated the relationship between the TRP-kynurenine pathway and painful physical symptoms (PPS) in major depressive disorder (MDD), and found that TRP may play a role in the pathophysiology of pain in patients with MDD.

1 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper , the authors synthesized the current literature investigating differences in gut microbiota composition in people with the major psychiatric disorders, major depressive disorder (MDD), bipolar disorder (BD), and schizophrenia (SZ), compared to healthy controls.
Abstract: Abstract The emerging understanding of gut microbiota as ‘metabolic machinery’ influencing many aspects of physiology has gained substantial attention in the field of psychiatry. This is largely due to the many overlapping pathophysiological mechanisms associated with both the potential functionality of the gut microbiota and the biological mechanisms thought to be underpinning mental disorders. In this systematic review, we synthesised the current literature investigating differences in gut microbiota composition in people with the major psychiatric disorders, major depressive disorder (MDD), bipolar disorder (BD) and schizophrenia (SZ), compared to ‘healthy’ controls. We also explored gut microbiota composition across disorders in an attempt to elucidate potential commonalities in the microbial signatures associated with these mental disorders. Following the PRISMA guidelines, databases were searched from inception through to December 2021. We identified 44 studies (including a total of 2510 psychiatric cases and 2407 controls) that met inclusion criteria, of which 24 investigated gut microbiota composition in MDD, seven investigated gut microbiota composition in BD, and 15 investigated gut microbiota composition in SZ. Our syntheses provide no strong evidence for a difference in the number or distribution (α-diversity) of bacteria in those with a mental disorder compared to controls. However, studies were relatively consistent in reporting differences in overall community composition (β-diversity) in people with and without mental disorders. Our syntheses also identified specific bacterial taxa commonly associated with mental disorders, including lower levels of bacterial genera that produce short-chain fatty acids (e.g. butyrate), higher levels of lactic acid-producing bacteria, and higher levels of bacteria associated with glutamate and GABA metabolism. We also observed substantial heterogeneity across studies with regards to methodologies and reporting. Further prospective and experimental research using new tools and robust guidelines hold promise for improving our understanding of the role of the gut microbiota in mental and brain health and the development of interventions based on modification of gut microbiota.

104 citations

Journal ArticleDOI
TL;DR: The main microbial metabolites (short-chain fatty acids -SCFAs-, bile acids, amino acids, tryptophan -trp- derivatives, and more), their signaling pathways and functions will be summarized to explain part of MDD pathophysiology.
Abstract: The gut microbiota is a complex and dynamic ecosystem essential for the proper functioning of the organism, affecting the health and disease status of the individuals. There is continuous and bidirectional communication between gut microbiota and the host, conforming to a unique entity known as “holobiont”. Among these crosstalk mechanisms, the gut microbiota synthesizes a broad spectrum of bioactive compounds or metabolites which exert pleiotropic effects on the human organism. Many of these microbial metabolites can cross the blood–brain barrier (BBB) or have significant effects on the brain, playing a key role in the so-called microbiota-gut-brain axis. An altered microbiota-gut-brain (MGB) axis is a major characteristic of many neuropsychiatric disorders, including major depressive disorder (MDD). Significative differences between gut eubiosis and dysbiosis in mental disorders like MDD with their different metabolite composition and concentrations are being discussed. In the present review, the main microbial metabolites (short-chain fatty acids -SCFAs-, bile acids, amino acids, tryptophan -trp- derivatives, and more), their signaling pathways and functions will be summarized to explain part of MDD pathophysiology. Conclusions from promising translational approaches related to microbial metabolome will be addressed in more depth to discuss their possible clinical value in the management of MDD patients.

37 citations

Journal ArticleDOI
TL;DR: The GMB profiles of patients with MDD differ significantly from HC, but further studies are needed to elucidate the benefits of prebiotic, probiotic and synbiotic treatments relative to antidepressants and over longer follow-up before these therapies are implemented into clinical practice.
Abstract: An emerging body of literature demonstrates differences in the gut microbiome (GMB) of patients with major depressive disorder (MDD) compared to healthy controls (HC), as well as the potential benefits of prebiotic, probiotic, and synbiotic treatment. We conducted a systematic review of 24 observational studies (n = 2817), and 19 interventional trials (n = 1119). We assessed alpha diversity, beta diversity, and taxa abundance changes in patients with MDD relative to HC, as well as the effect of prebiotics, probiotics, and synbiotics on depressive symptoms in individuals with clinical or subclinical depression. We observed no significant differences in alpha diversity but a significant difference in beta diversity between patients with MDD and HC. There were fluctuations in the abundance of specific taxa in patients with MDD relative to HC. Probiotic and synbiotic, but not prebiotic, treatment showed a modest benefit in reducing depressive symptoms in patients with MDD over four to nine weeks. The GMB profiles of patients with MDD differ significantly from HC, but further studies are needed to elucidate the benefits of prebiotic, probiotic and synbiotic treatments relative to antidepressants and over longer follow-up before these therapies are implemented into clinical practice.

34 citations

Journal ArticleDOI
TL;DR: A review of recent scientific elements that explore the communication between gut microbiota and the brain by focusing on the enteric nervous system (ENS) as an intermediate partner is presented in this article.

22 citations

Journal ArticleDOI
TL;DR: An overarching model of the evolution of microbiome–CNS interaction is set out and how a growing knowledge of these complex systems can be used to determine disease susceptibility and reduce risk in a targeted manner is examined.

18 citations