scispace - formally typeset
Search or ask a question
Author

Yan-Chao Wang

Bio: Yan-Chao Wang is an academic researcher from Shanghai Jiao Tong University. The author has contributed to research in topics: Chronic pain & Nociception. The author has an hindex of 6, co-authored 8 publications receiving 249 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The results illustrate a novel spinal dorsal horn microglial GLP-1R/β-endorphin inhibitory pathway in a variety of pain hypersensitivity states that potently alleviated formalin, peripheral nerve injury, bone cancer, and diabetes-induced hypers sensitivity states.
Abstract: This study aims to identify the inhibitory role of the spinal glucagon like peptide-1 receptor (GLP-1R) signaling in pain hypersensitivity and its mechanism of action in rats and mice. First, GLP-1Rs were identified to be specifically expressed on microglial cells in the spinal dorsal horn, and profoundly upregulated after peripheral nerve injury. In addition, intrathecal GLP-1R agonists GLP-1(7-36) and exenatide potently alleviated formalin-, peripheral nerve injury-, bone cancer-, and diabetes-induced hypersensitivity states by 60-90%, without affecting acute nociceptive responses. The antihypersensitive effects of exenatide and GLP-1 were completely prevented by GLP-1R antagonism and GLP-1R gene knockdown. Furthermore, exenatide evoked β-endorphin release from both the spinal cord and cultured microglia. Exenatide antiallodynia was completely prevented by the microglial inhibitor minocycline, β-endorphin antiserum, and opioid receptor antagonist naloxone. Our results illustrate a novel spinal dorsal horn microglial GLP-1R/β-endorphin inhibitory pathway in a variety of pain hypersensitivity states.

99 citations

Journal ArticleDOI
TL;DR: Spinal DAO mediates both induction and maintenance of formalin-induced tonic pain and further validate spinal DAO as a novel and efficacious target molecule for the treatment of chronic pain.
Abstract: We have found that mutation of D-amino acid oxidase (DAO) diminished formalin-induced tonic pain. The present research further studied the analgesic effects of a series of DAO inhibitors in this model. 5-Chlorobenzo[d]isoxazol-3-ol (CBIO), 4H-thieno[3,2-b]pyrrole-5-carboxylic acid (compound 8), 5-methylpyrazole-3-carboxylic acid (AS057278), sodium benzoate, and 4-nitro-3-pyrazole carboxylic acid (NPCA) inhibited rat spinal cord-derived DAO activity in a concentration-dependent manner, with maximal inhibition of 100% and potency rank of CBIO > compound 8 > AS057278 > sodium benzoate > NPCA. In rats, intrathecal injections of CBIO, compound 8, AS057278, and sodium benzoate but not NPCA specifically prevented formalin-induced tonic pain but not acute nociception, with the same potency order as in the DAO activity assay. The highly potent analgesia of DAO inhibitors was evidenced by CBIO, which prevented 50% pain at 0.06 μg, approximately 5-fold the potency of morphine. CBIO given after formalin challenge also reversed the established pain state to the same degree as prevention. The antihyperalgesic potencies of these DAO inhibitors were highly correlated to their inhibitions of spinal DAO activity. Maximum inhibition of pain by these compounds was approximately 60%, comparable with that of the N-methyl-D-aspartic acid receptor antagonist (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate (MK-801), suggesting that a larger portion of formalin-induced tonic pain is "DAO-sensitive," whereas the remaining 40% of tonic pain and acute nociception is "DAO-insensitive." These findings, combined with our previous DAO gene mutation and induction results, indicate spinal DAO mediates both induction and maintenance of formalin-induced tonic pain and further validate spinal DAO as a novel and efficacious target molecule for the treatment of chronic pain.

55 citations

Journal ArticleDOI
TL;DR: The role of spinal hydrogen peroxide in pain and the mechanism of the analgesic effects of DAAO inhibitors are examined.
Abstract: BACKGROUND AND PURPOSE Spinal reactive oxygen species (ROS) are critically involved in chronic pain. d-Amino acid oxidase (DAAO) oxidizes d-amino acids such as d-serine to form the byproduct hydrogen peroxide without producing other ROS. DAAO inhibitors are specifically analgesic in tonic pain, neuropathic pain and cancer pain. This study examined the role of spinal hydrogen peroxide in pain and the mechanism of the analgesic effects of DAAO inhibitors. EXPERIMENTAL APPROACH Formalin-induced pain behaviours and spinal hydrogen peroxide levels were measured in rodents. KEY RESULTS Formalin injected into the paw increased spinal hydrogen peroxide synchronously with enhanced tonic pain; both were effectively prevented by i.t. fluorocitrate, a selective astrocyte metabolic inhibitor. Given systemically, the potent DAAO inhibitor CBIO (5-chloro-benzo[d]isoxazol-3-ol) blocked spinal DAAO enzymatic activity and specifically prevented formalin-induced tonic pain in a dose-dependent manner. Although CBIO maximally inhibited tonic pain by 62%, it completely prevented the increase in spinal hydrogen peroxide. I.t. catalase, an enzyme specific for decomposition of hydrogen peroxide, completely depleted spinal hydrogen peroxide and prevented formalin-induced tonic pain by 65%. Given systemically, the ROS scavenger PBN (phenyl-N-tert-butylnitrone) also inhibited formalin-induced tonic pain and increase in spinal hydrogen peroxide. Formalin-induced tonic pain was potentiated by i.t. exogenous hydrogen peroxide. CBIO did not increase spinal d-serine level, and i.t. d-serine did not alter either formalin-induced tonic pain or CBIO's analgesic effect. CONCLUSIONS AND IMPLICATIONS Spinal hydrogen peroxide is specifically and largely responsible for formalin-induced pain, and DAAO inhibitors produce analgesia by blocking spinal hydrogen peroxide production rather than interacting with spinal d-serine.

53 citations

Journal ArticleDOI
TL;DR: DAAO is identified as an efficacious molecule mediating morphine tolerance, in addition to clarifying the complex interactions between morphine and DAAO inhibitors probed by CBIO, and provided a pharmacological basis for D AAO inhibitors in combination with morphine to clinically manage pain.

27 citations

Journal ArticleDOI
TL;DR: Results suggest that down-regulation of spinal DAAO expression and enzymatic activity leads to analgesia with its mechanism potentially related to activation of astrocytes in the spinal cord.

25 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The power of combining the novel GLP-1R-CRE mouse with a virus to generate a selective molecular handle enabling future in vivo investigation as to their physiological importance is demonstrated.
Abstract: Objective Although Glucagon-like peptide 1 is a key regulator of energy metabolism and food intake, the precise location of GLP-1 receptors and the physiological relevance of certain populations is debatable. This study investigated the novel GLP-1R-Cre mouse as a functional tool to address this question.

303 citations

Journal ArticleDOI
TL;DR: This review outlines the anti-inflammatory actions of GLP-1-based therapies on diseases associated with chronic inflammation in vivo and in vitro, and their molecular mechanisms of anti- inflammatory action.
Abstract: Glucagon-like peptide-1 (GLP-1) is an incretin hormone mainly secreted from intestinal L cells in response to nutrient ingestion. GLP-1 has beneficial effects for glucose homeostasis by stimulating insulin secretion from pancreatic beta-cells, delaying gastric emptying, decreasing plasma glucagon, reducing food intake, and stimulating glucose disposal. Therefore, GLP-1-based therapies such as GLP-1 receptor agonists and inhibitors of dipeptidyl peptidase-4, which is a GLP-1 inactivating enzyme, have been developed for treatment of type 2 diabetes. In addition to glucose-lowering effects, emerging data suggests that GLP-1-based therapies also show anti-inflammatory effects in chronic inflammatory diseases including type 1 and 2 diabetes, atherosclerosis, neurodegenerative disorders, nonalcoholic steatohepatitis, diabetic nephropathy, asthma, and psoriasis. This review outlines the anti-inflammatory actions of GLP-1-based therapies on diseases associated with chronic inflammation in vivo and in vitro, and their molecular mechanisms of anti-inflammatory action.

300 citations

Journal ArticleDOI
TL;DR: Small-molecule modulators offer complementary chemical tools to peptide analogs to investigate ligand-directed biased cellular signaling of GLP-1R to provide novel opportunities in the design and development of more efficacious agents to treat metabolic disorders.
Abstract: The glucagon-like peptide (GLP)-1 receptor (GLP-1R) is a class B G protein–coupled receptor (GPCR) that mediates the action of GLP-1, a peptide hormone secreted from three major tissues in humans, enteroendocrine L cells in the distal intestine, α cells in the pancreas, and the central nervous system, which exerts important actions useful in the management of type 2 diabetes mellitus and obesity, including glucose homeostasis and regulation of gastric motility and food intake. Peptidic analogs of GLP-1 have been successfully developed with enhanced bioavailability and pharmacological activity. Physiologic and biochemical studies with truncated, chimeric, and mutated peptides and GLP-1R variants, together with ligand-bound crystal structures of the extracellular domain and the first three-dimensional structures of the 7-helical transmembrane domain of class B GPCRs, have provided the basis for a two-domain–binding mechanism of GLP-1 with its cognate receptor. Although efforts in discovering therapeutically viable nonpeptidic GLP-1R agonists have been hampered, small-molecule modulators offer complementary chemical tools to peptide analogs to investigate ligand-directed biased cellular signaling of GLP-1R. The integrated pharmacological and structural information of different GLP-1 analogs and homologous receptors give new insights into the molecular determinants of GLP-1R ligand selectivity and functional activity, thereby providing novel opportunities in the design and development of more efficacious agents to treat metabolic disorders.

234 citations

Journal ArticleDOI
TL;DR: The current literature on the way in which several neuropeptides modulate microglial activity and response to tissue damage and how this modulation may affect pain sensitivity is summarized.
Abstract: Microglial cells are responsible for immune surveillance within the CNS. They respond to noxious stimuli by releasing inflammatory mediators and mounting an effective inflammatory response. This is followed by release of anti-inflammatory mediators and resolution of the inflammatory response. Alterations to this delicate process may lead to tissue damage, neuroinflammation, and neurodegeneration. Chronic pain, such as inflammatory or neuropathic pain, is accompanied by neuroimmune activation, and the role of glial cells in the initiation and maintenance of chronic pain has been the subject of increasing research over the last two decades. Neuropeptides are small amino acidic molecules with the ability to regulate neuronal activity and thereby affect various functions such as thermoregulation, reproductive behavior, food and water intake, and circadian rhythms. Neuropeptides can also affect inflammatory responses and pain sensitivity by modulating the activity of glial cells. The last decade has witnessed growing interest in the study of microglial activation and its modulation by neuropeptides in the hope of developing new therapeutics for treating neurodegenerative diseases and chronic pain. This review summarizes the current literature on the way in which several neuropeptides modulate microglial activity and response to tissue damage and how this modulation may affect pain sensitivity.

158 citations

Journal ArticleDOI
TL;DR: A method for determining the nutritional value of d-amino acids, d-peptides, and amino acid derivatives using a growth assay in mice fed a synthetic all-aminos acid diet is reviewed and interpreted.
Abstract: This paper reviews and interprets a method for determining the nutritional value of d-amino acids, d-peptides, and amino acid derivatives using a growth assay in mice fed a synthetic all-amino acid diet. A large number of experiments were carried out in which a molar equivalent of the test compound replaced a nutritionally essential amino acid such as l-lysine (l-Lys), l-methionine (l-Met), l-phenylalanine (l-Phe), and l-tryptophan (l-Trp) as well as the semi-essential amino acids l-cysteine (l-Cys) and l-tyrosine (l-Tyr). The results show wide-ranging variations in the biological utilization of test substances. The method is generally applicable to the determination of the biological utilization and safety of any amino acid derivative as a potential nutritional source of the corresponding l-amino acid. Because the organism is forced to use the d-amino acid or amino acid derivative as the sole source of the essential or semi-essential amino acid being replaced, and because a free amino acid diet allows better control of composition, the use of all-amino-acid diets for such determinations may be preferable to protein-based diets. Also covered are brief summaries of the widely scattered literature on dietary and pharmacological aspects of 27 individual d-amino acids, d-peptides, and isomeric amino acid derivatives and suggested research needs in each of these areas. The described results provide a valuable record and resource for further progress on the multifaceted aspects of d-amino acids in food and biological samples.

133 citations