scispace - formally typeset
Search or ask a question
Author

Yan-Fei Liu

Bio: Yan-Fei Liu is an academic researcher from Queen's University. The author has contributed to research in topics: Inductor & Buck converter. The author has an hindex of 45, co-authored 374 publications receiving 7754 citations. Previous affiliations of Yan-Fei Liu include bell northern research & General Electric.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a predictive algorithm for digital control power factor correction (PFC) is presented, where all of the duty cycles required to achieve unity power factor in one half line period are calculated in advance by digital signal processors (DSP).
Abstract: A predictive algorithm for digital control power factor correction (PFC) is presented in this paper. Based on this algorithm, all of the duty cycles required to achieve unity power factor in one half line period are calculated in advance by digital signal processors (DSP). A boost converter controlled by these precalculated duty cycles can achieve sinusoidal current waveform. One main advantage is that the digital control PFC implementation based on this control strategy can operate at a high switching frequency which is not directly dependent on the processing speed of DSP. Input voltage feed-forward compensation makes the output voltage insensitive to the input voltage variation and guarantees sinusoidal input current even if the input voltage is distorted. A prototype of boost PFC controlled by a DSP evaluation board was set up to implement the proposed predictive control strategy. Both the simulation and experimental results show that the proposed predictive strategy for PFC achieves near unity power factor.

226 citations

Journal ArticleDOI
TL;DR: In this article, a new control algorithm is proposed to achieve optimal dynamic performance for dc-to-dc converters under a load current change and for a given set of circuit parameters, such as the output inductor, output capacitor, switching frequency, input voltage, and output voltage.
Abstract: In this paper, a new control algorithm is proposed to achieve optimal dynamic performance for dc-to-dc converters under a load current change and for a given set of circuit parameters, such as the output inductor, output capacitor, switching frequency, input voltage, and output voltage. Using the concept of capacitor charge balance, the proposed algorithm predicts the optimal transient response for a dc-to-dc converter during a large signal load current change. During steady state operation, conventional current mode proportional-integral-derivative (PID) is used. During large signal transient conditions, the new control algorithm takes over. The equations needed to calculate the transient time and the required duty cycle series are presented. By using the proposed algorithm, the optimal transient performances, including the smallest output voltage overshoot/undershoot and the shortest recovery time, is achieved. In addition, since the large signal dynamic response of the power converter is successfully predicted, the large signal stability is guaranteed. Experimental results show that the proposed method produces superior dynamic performance over a conventional current mode PID controller.

224 citations

Journal ArticleDOI
TL;DR: In this article, an overview of recent advances in digital control of low-to medium-power dc/dc switching converters is presented, including applications such as online efficiency optimization, controller autotuning and specialized nonlinear control.
Abstract: In this paper, an overview of recent advances in digital control of low- to medium-power dc/dc switching converters is presented. Traditionally, such dc/dc converters have been almost exclusively controlled through analog electronics methods. However, with the steadily decreasing cost of ICs, the feasibility of digitally controlled dc/dc switching converters has increased significantly. This paper outlines some of the existing design challenges related to digital control and reviews a sample of recently proposed solutions. In addition, present-day research pertaining to applications such as online efficiency optimization, controller autotuning, and specialized nonlinear control is presented. Such applications demonstrate the true advantages and potential of digital control as their complexity prevents practical implementation in the analog domain.

204 citations

Journal ArticleDOI
TL;DR: A novel design procedure of proportional and integral (Pl)-like fuzzy logic controller for DC-DC converters that integrates linear control techniques with fuzzy logic results in a nonlinear controller with improved performance over linear PI controllers.
Abstract: This paper proposes a novel design procedure of proportional and integral (Pl)-like fuzzy logic controller (FLC) for DC-DC converters that integrates linear control techniques with fuzzy logic. The design procedure allows the small signal model of the converter and linear control design techniques to be used in the initial stages of FLC design. This simplifies the small signal design and the stability assessment of the FLC. By exploiting the fuzzy logic structure of the controller, heuristic knowledge is incorporated in the design, which results in a nonlinear controller with improved performance over linear PI controllers.

172 citations

Journal ArticleDOI
TL;DR: In this article, a novel control method is presented which utilizes the concept of capacitor charge balance to achieve optimal dynamic response for buck converters undergoing a rapid load change, which is implemented with analog components and is cheaper and more effective than its digital counterparts.
Abstract: A novel control method is presented in this paper which utilizes the concept of capacitor charge balance to achieve optimal dynamic response for buck converters undergoing a rapid load change. The proposed charge balance method is implemented with analog components and is cheaper and more effective than its digital counterparts since complex arithmetic and sampling delay is eliminated. The proposed controller will consistently cause the buck converter to recover from an arbitrary load transient with the smallest possible voltage deviation in the shortest possible settling time. Since the controller is nonlinear during transient conditions, it is not limited by bandwidth/switching frequency. Unlike conventional linear controllers, the dynamic response (voltage deviation, settling time) of the proposed controller can be estimated using a set of equations. This greatly simplifies the design process of the output filter. Simulation and experimental results show the functionality of the controller and demonstrate the superior dynamic response over that of a conventional linear controller.

170 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: The feasibility and great potential of FCS-MPC due to present-day signal-processing capabilities, particularly for power systems with a reduced number of switching states and more complex operating principles, such as matrix converters are found.
Abstract: This paper presents a detailed description of finite control set model predictive control (FCS-MPC) applied to power converters Several key aspects related to this methodology are, in depth, presented and compared with traditional power converter control techniques, such as linear controllers with pulsewidth-modulation-based methods The basic concepts, operating principles, control diagrams, and results are used to provide a comparison between the different control strategies The analysis is performed on a traditional three-phase voltage source inverter, used as a simple and comprehensive reference frame However, additional topologies and power systems are addressed to highlight differences, potentialities, and challenges of FCS-MPC Among the conclusions are the feasibility and great potential of FCS-MPC due to present-day signal-processing capabilities, particularly for power systems with a reduced number of switching states and more complex operating principles, such as matrix converters In addition, the possibility to address different or additional control objectives easily in a single cost function enables a simple, flexible, and improved performance controller for power-conversion systems

1,554 citations

Journal ArticleDOI
TL;DR: A simple classification of the most important types of predictive control is introduced, and each one of them is explained including some application examples.
Abstract: Predictive control is a very wide class of controllers that have found rather recent application in the control of power converters. Research on this topic has been increased in the last years due to the possibilities of today's microprocessors used for the control. This paper presents the application of different predictive control methods to power electronics and drives. A simple classification of the most important types of predictive control is introduced, and each one of them is explained including some application examples. Predictive control presents several advantages that make it suitable for the control of power converters and drives. The different control schemes and applications presented in this paper illustrate the effectiveness and flexibility of predictive control.

1,389 citations

Journal ArticleDOI
TL;DR: The results show that the predictive method controls very effectively the load current and performs very well compared with the classical solutions.
Abstract: This paper presents a predictive current control method and its application to a voltage source inverter. The method uses a discrete-time model of the system to predict the future value of the load current for all possible voltage vectors generated by the inverter. The voltage vector which minimizes a quality function is selected. The quality function used in this work evaluates the current error at the next sampling time. The performance of the proposed predictive control method is compared with hysteresis and pulsewidth modulation control. The results show that the predictive method controls very effectively the load current and performs very well compared with the classical solutions

1,387 citations