scispace - formally typeset
Search or ask a question
Author

Yan Jing Fan

Bio: Yan Jing Fan is an academic researcher from Chonbuk National University. The author has contributed to research in topics: Ovalbumin & Chemokine. The author has an hindex of 2, co-authored 6 publications receiving 14 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: It is suggested that LA could be a potential therapeutic agent in OVA-induced allergic rhinitis by virtue of its role in controlling the Th17/Treg balance and enhancing Nrf2/HO-1 pathway signaling.
Abstract: An ovalbumin (OVA)-induced allergic rhinitis (AR) mouse model was established to investigate whether α-Lipoic acid (LA) has a protective effect against upper respiratory tract inflammation. BALB/c mice were sensitized by intraperitoneal injection and challenged by intranasal application of OVA. Mice were orally administered various doses of LA once daily (2, 10, 50 mg/kg) and dexamethasone (Dex; 2.5 mg/kg) 1 h before OVA challenge. Allergic nasal symptoms, levels of OVA-specific immunoglobulins, cytokines, and transcription factors were measured. Nasal and lung histopathology were evaluated. LA administration significantly alleviated the nasal symptoms such as rubbing and sneezing, markedly reduced both serum OVA-specific IgE and IgG1 levels. The LA treatment group showed markedly up-regulated levels of the Treg cytokine IL-10 and Treg transcription factor Foxp3. In contrast, it showed down-regulated levels of the Th17 cytokine IL-17 and the Th17 transcription factor STAT3, and RORγ. LA greatly enhanced the nuclear factor erythroid-derived 2/heme oxygenase 1 (Nrf2/HO-1) pathway signaling and inhibited the activation of NF-κB/IκB, markedly suppressed the levels of pro-inflammatory cytokines TNF-α, IL-1β, IL-6, IL-8 and chemokine COX-2. The histologic alterations of nasal and lung tissues of AR mice were effectively ameliorated by LA. Based on these results, we suggest that LA could be a potential therapeutic agent in OVA-induced AR by virtue of its role in controlling the Th17/Treg balance and enhancing Nrf2/HO-1 pathway signaling.

22 citations

Journal ArticleDOI
TL;DR: Mangiferin exerts protective effects in AR by inhibiting NF-κB and activating HO-1/Nrf2 pathways and could be used for the treatment of AR.
Abstract: Mangiferin (MF), extracted from mango trees, is considered to have anti-inflammatory, anti-apoptotic, and antioxidant effects. However, its effects on allergic rhinitis (AR), remain unclear. We investigated the mechanisms underlying the protective action of MF in ovalbumin (OVA)-induced AR models. AR was induced by OVA challenge in BALB/c mice. Prior to this, MF and dexamethasone were administered. Mice were examined for nasal mucosal inflammation, the generation of allergen-specific cytokine response, and histopathological changes in the nasal mucosa and lung tissue. MF ameliorated nasal symptoms and nasal mucosa inflammation in OVA-induced AR and reduced inflammatory cell infiltration and epithelial disruption in these tissues. MF inhibited the overproduction of Th2/Th17 cytokines and transcription factors. MF downregulated the HO-1/Nrf2 pathways, reduced oxidative stress biomarker levels, and the NF-κB signaling pathways were inhibited. MF exerts protective effects in AR by inhibiting NF-κB and activating HO-1/Nrf2 pathways. MF could be used for the treatment of AR.

17 citations

Journal ArticleDOI
TL;DR: It is demonstrated that DC acts a potent anti-allergic and anti-inflammatory drug by modulating the Th1 and Th2 response and reducing the allergic inflammatory reaction in PMA and A23187-stimulated HMC-1 cells via NF-κB signaling in an OVA-induced allergic asthma model.
Abstract: Dryopteris crassirhizoma (DC) has a wide range of pharmacological effects, including antibacterial, anti‑influenza virus, anti‑tumor, anti‑reverse transcriptase and antioxidant effects. However, the inhibitory effect of DC on allergic inflammatory response remains unclear; therefore, the current study used an experimental ovalbumin (OVA)‑induced allergic asthma mouse model and phorbol myristate acetate (PMA)‑ and A23187‑stimulated HMC‑1 cells to reveal the effects of DC in regulating airway inflammation and its possible mechanism. Allergic asthma was initiated in BALB/c mice via exposure to OVA emulsified in aluminum, on days 1 and 14. Thereafter, the mice were treated with DC or dexamethasone (Dex) orally, before being challenged, from days 15 to 26. Subsequently, the mice were challenged with OVA on days 27, 28 and 29. The results of histological analysis indicated that the administration of DC decreased the number of inflammatory cells in the bronchoalveolar lavage fluid (BALF) and suppressed eosinophilic infiltration, mucus production and collagen deposition in the lung tissue. DC treatment increased the level of T helper type 1 (Th1) cytokines (IL‑10 and interferon (IFN)‑γ) and decreased the levels Th2 cytokines (IL‑4, IL‑5 and IL‑13) and proinflammatory cytokines (IL‑6 and TNF‑α). Furthermore, DC treatment inhibited the activation of NF‑κB signaling (NF‑κB, p‑NF‑κB, IκB and p‑IκB), both in BALF and lung homogenates. Serum levels of total IgE and OVA‑specific IgE and IgG1 were significantly lower after DC treatment compared with after OVA treatment. However, the anti‑inflammatory effect of OVA‑specific IgG2a was higher after DC treatment. In addition, DC treatment attenuated the production of proinflammatory cytokines, including IL‑6 and TNF‑α, and the activation of NF‑κB signaling (NF‑κB and p‑NF‑κB), in PMA and calcium ionophore A23187‑stimulated HMC‑1 cells. In summary, the current study demonstrated that DC acts a potent anti‑allergic and anti‑inflammatory drug by modulating the Th1 and Th2 response and reducing the allergic inflammatory reaction in PMA and A23187‑stimulated HMC‑1 cells via NF‑κB signaling in an OVA‑induced allergic asthma model.

8 citations

Journal ArticleDOI
TL;DR: Results indicate that thermal therapy combined with LED irradiation alleviated TMA-induced acute CHS in the mouse model, and thermal therapy and phototherapy should be considered as a novel therapeutic tool for the treatment of skin inflammation.
Abstract: The biological effect of phototherapy, which involves using visible light for disease treatment, has attracted recent attention, especially in dermatological practice. Light-emitting diode (LED) ir...

2 citations


Cited by
More filters
Journal Article

953 citations

Journal ArticleDOI
TL;DR: A review of animal and clinical studies on oxidative markers and the potential therapeutic dietary antioxidants for allergic rhinitis is presented in this paper, where the role of antioxidants and oxidative stress in the development of the disease is discussed.
Abstract: Oxidative stress is the cause and consequence of redox metabolism in various physiological and pathological conditions. Understanding the molecular pathways underlying oxidative stress and the role of antioxidants could serve as the key to helping treat associated diseases. Allergic rhinitis is a condition that deteriorates the daily function and quality of life of afflicted individuals and is associated with a high socioeconomic burden and prevalence. Recent studies have focused on the role of oxidative stress and antioxidants in allergic rhinitis. This review discusses animal and clinical studies on oxidative markers and the potential therapeutic dietary antioxidants for allergic rhinitis.

14 citations

Journal ArticleDOI
TL;DR: In this paper, the thermal stability of a dihydrochalcone, 3′,5′-di-β-d -glucopyranosyl-3-hydroxyphloretin (2), 3′ and 5′, 5′-d-di-, di-β-, d-glocopyrano-phloine (3) and other Cyclopia subternata phenolic compounds, in model solutions with or without citric acid and ascorbic acid was investigated.

13 citations

Journal ArticleDOI
TL;DR: In this article , the role of herbs and herbs-derived secondary metabolites in inhibiting SARS-CoV-2 virus and also for the management of post-COVID-19 related complications.

11 citations

Journal ArticleDOI
TL;DR: In this paper, a review of the use of medicinal plants on reducing respiratory complications and their bioactive phytoconstituents has been conducted with detailed mechanism and action with the aim to find out the potent natural products that help to prevent, treat, and manage respiratory diseases.
Abstract: Respiratory inflammation is caused by an air-mediated disease induced by polluted air, smoke, bacteria, and viruses. The COVID-19 pandemic is also a kind of respiratory disease, induced by a virus causing a serious effect on the lungs, bronchioles, and pharynges that results in oxygen deficiency. Extensive research has been conducted to find out the potent natural products that help to prevent, treat, and manage respiratory diseases. Traditionally, wider floras were reported to be used, such as Morus alba, Artemisia indica, Azadirachta indica, Calotropis gigantea, but only some of the potent compounds from some of the plants have been scientifically validated. Plant-derived natural products such as colchicine, zingerone, forsythiaside A, mangiferin, glycyrrhizin, curcumin, and many other compounds are found to have a promising effect on treating and managing respiratory inflammation. In this review, current clinically approved drugs along with the efficacy and side effects have been studied. The study also focuses on the traditional uses of medicinal plants on reducing respiratory complications and their bioactive phytoconstituents. The pharmacological evidence of lowering respiratory complications by plant-derived natural products has been critically studied with detailed mechanism and action. However, the scientific validation of such compounds requires clinical study and evidence on animal and human models to replace modern commercial medicine.

10 citations