scispace - formally typeset
Search or ask a question
Author

Yan Li

Bio: Yan Li is an academic researcher from Peking Union Medical College. The author has contributed to research in topics: Medicine & Mass spectrometry. The author has an hindex of 30, co-authored 349 publications receiving 3930 citations. Previous affiliations of Yan Li include Van Andel Institute & China Jiliang University.


Papers
More filters
Journal ArticleDOI
TL;DR: It is indicated that sunitinib inhibits ccRCC growth primarily through an antiangiogenic mechanism and not through direct targeting ofccRCC tumor cells.
Abstract: Sunitinib is a broad-spectrum small-molecule inhibitor of receptor tyrosine kinases (RTK) that serves as the present standard of care for first-line therapy of advanced clear cell renal cell carcinoma (ccRCC). A full understanding of the targets and mechanism of action of sunitinib in ccRCC treatment remains incomplete. In this study, we evaluated several tumor cell and endothelial targets of sunitinib and investigated which RTK(s) may specifically contribute to its therapeutic effects. Microarray expression profiling and Western blot analysis revealed that among known sunitinib targets, only platelet-derived growth factor receptor-beta and vascular endothelial growth factor receptor-2 (VEGFR-2) were overexpressed in ccRCCs relative to normal tissues. Sunitinib was unable to inhibit survival or proliferation of ccRCC cells at pharmacologically relevant concentrations (approximately 0.1 micromol/L) that inhibit RTK targets. In contrast, sunitinib inhibited endothelial cell proliferation and motility at the same concentrations by suppressing VEGFR-2 signaling. Moreover, whereas sunitinib inhibited the growth of ccRCC xenograft tumors and decreased tumor microvessel density as soon as 12 hours after treatment, sunitinib showed no significant effects on tumor cell proliferation or apoptosis up to 72 hours after treatment. Our findings indicate that sunitinib inhibits ccRCC growth primarily through an antiangiogenic mechanism and not through direct targeting of ccRCC tumor cells.

216 citations

Journal ArticleDOI
30 Oct 2008-PLOS ONE
TL;DR: The results provide a correlation of kidney-targeted gene inactivation with renal carcinoma, and suggest that the BHD product FLCN, functioning as a cyst and tumor suppressor, like other hamartoma syndrome–related proteins such as PTEN, LKB1, and TSC1/2, is a component of the mTOR pathway, constituting a novel F LCN-mTOR signaling branch that regulates cell growth/proliferation.
Abstract: The Birt–Hogg–Dube (BHD) disease is a genetic cancer syndrome. The responsible gene, BHD, has been identified by positional cloning and thought to be a novel tumor suppressor gene. BHD mutations cause many types of diseases including renal cell carcinomas, fibrofolliculomas, spontaneous pneumothorax, lung cysts, and colonic polyps/cancers. By combining Gateway Technology with the Ksp-Cre gene knockout system, we have developed a kidney-specific BHD knockout mouse model. BHDflox/flox/Ksp-Cre mice developed enlarged kidneys characterized by polycystic kidneys, hyperplasia, and cystic renal cell carcinoma. The affected BHDflox/flox/Ksp-Cre mice died of renal failure at approximate three weeks of age, having blood urea nitrogen levels over tenfold higher than those of BHD flox/+/Ksp-Cre and wild-type littermate controls. We further demonstrated that these phenotypes were caused by inactivation of BHD and subsequent activation of the mTOR pathway. Application of rapamycin, which inhibits mTOR activity, to the affected mice led to extended survival and inhibited further progression of cystogenesis. These results provide a correlation of kidney-targeted gene inactivation with renal carcinoma, and they suggest that the BHD product FLCN, functioning as a cyst and tumor suppressor, like other hamartoma syndrome–related proteins such as PTEN, LKB1, and TSC1/2, is a component of the mTOR pathway, constituting a novel FLCN-mTOR signaling branch that regulates cell growth/proliferation.

134 citations

Journal ArticleDOI
TL;DR: The results suggest that bicyclol has remarkable hepatoprotective effects on LPS/D-galactosamine-induced liver injury and the possible mechanism is related to its anti-inflammatory action.

85 citations

Journal ArticleDOI
Xue Li1, Jinping Hu1, Baolian Wang1, Li Sheng1, Zhihao Liu1, Shuang Yang1, Yan Li1 
TL;DR: Four herbal constituents demonstrated inhibition of P-gp to specific extents in vitro and in vivo as well as related inhibitory mechanisms that provided the basis for the reliable assessment of the potential risks of herb-drug interactions in humans.

83 citations

Journal ArticleDOI
21 Nov 2018-Cancers
TL;DR: This study suggested greater potentials in tumor immune microenvironment regulation and tumor prevention than in direct killing tumor cells of health-strengthening herbs generally, and provided a systematic strategy for unveiling the commonness in the biological basis in cancer treatment.
Abstract: Health-strengthening (Fu-Zheng) herbs is a representative type of traditional Chinese medicine (TCM) widely used for cancer treatment in China, which is in contrast to pathogen eliminating (Qu-Xie) herbs. However, the commonness in the biological basis of health-strengthening herbs remains to be holistically elucidated. In this study, an innovative high-throughput research strategy integrating computational and experimental methods of network pharmacology was proposed, and 22 health-strengthening herbs were selected for the investigation. Additionally, 25 pathogen-eliminating herbs were included for comparison. First, based on network-based, large-scale target prediction, we analyzed the target profiles of 1446 TCM compounds. Next, the actions of 166 compounds on 420 antitumor or immune-related genes were measured using a unique high-throughput screening strategy by high-throughput sequencing, referred to as HTS2. Furthermore, the structural information and the antitumor activity of the compounds in health-strengthening and pathogen-eliminating herbs were compared. Using network pharmacology analysis, we discovered that: (1) Functionally, the predicted targets of compounds from health strengthening herbs were enriched in both immune-related and antitumor pathways, similar to those of pathogen eliminating herbs. As a case study, galloylpaeoniflorin, a compound in a health strengthening herb Radix Paeoniae Alba (Bai Shao), was found to exert antitumor effects both in vivo and in vitro. Yet the inhibitory effects of the compounds from pathogen eliminating herbs on tumor cells proliferation as a whole were significantly stronger than those in health-strengthening herbs (p < 0.001). Moreover, the percentage of assay compounds in health-strengthening herbs with the predicted targets enriched in the immune-related pathways (e.g., natural killer cell mediated cytotoxicity and antigen processing and presentation) were significantly higher than that in pathogen-eliminating herbs (p < 0.05). This finding was supported by the immune-enhancing effects of a group of compounds from health-strengthening herbs indicated by differentially expressed genes in the HTS2 results. (2) Compounds in the same herb may exhibit the same or distinguished mechanisms in cancer treatment, which was demonstrated as the compounds influence pathway gene expressions in the same or opposite directions. For example, acetyl ursolic acid and specnuezhenide in a health-strengthening herb Fructus Ligustri lucidi (Nv Zhen Zi) both upregulated gene expressions in T cell receptor signaling pathway. Together, this study suggested greater potentials in tumor immune microenvironment regulation and tumor prevention than in direct killing tumor cells of health-strengthening herbs generally, and provided a systematic strategy for unveiling the commonness in the biological basis of health-strengthening herbs in cancer treatment.

82 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal Article
TL;DR: In this paper, the coding exons of the family of 518 protein kinases were sequenced in 210 cancers of diverse histological types to explore the nature of the information that will be derived from cancer genome sequencing.
Abstract: AACR Centennial Conference: Translational Cancer Medicine-- Nov 4-8, 2007; Singapore PL02-05 All cancers are due to abnormalities in DNA. The availability of the human genome sequence has led to the proposal that resequencing of cancer genomes will reveal the full complement of somatic mutations and hence all the cancer genes. To explore the nature of the information that will be derived from cancer genome sequencing we have sequenced the coding exons of the family of 518 protein kinases, ~1.3Mb DNA per cancer sample, in 210 cancers of diverse histological types. Despite the screen being directed toward the coding regions of a gene family that has previously been strongly implicated in oncogenesis, the results indicate that the majority of somatic mutations detected are “passengers”. There is considerable variation in the number and pattern of these mutations between individual cancers, indicating substantial diversity of processes of molecular evolution between cancers. The imprints of exogenous mutagenic exposures, mutagenic treatment regimes and DNA repair defects can all be seen in the distinctive mutational signatures of individual cancers. This systematic mutation screen and others have previously yielded a number of cancer genes that are frequently mutated in one or more cancer types and which are now anticancer drug targets (for example BRAF , PIK3CA , and EGFR ). However, detailed analyses of the data from our screen additionally suggest that there exist a large number of additional “driver” mutations which are distributed across a substantial number of genes. It therefore appears that cells may be able to utilise mutations in a large repertoire of potential cancer genes to acquire the neoplastic phenotype. However, many of these genes are employed only infrequently. These findings may have implications for future anticancer drug development.

2,737 citations

Journal ArticleDOI
09 Mar 2017
TL;DR: An overview of the biology of RCC, with a focus on ccRCC, as well as updates to complement the current clinical guidelines and an outline of potential future directions for RCC research and therapy are provided.
Abstract: Renal cell carcinoma (RCC) denotes cancer originated from the renal epithelium and accounts for >90% of cancers in the kidney. The disease encompasses >10 histological and molecular subtypes, of which clear cell RCC (ccRCC) is most common and accounts for most cancer-related deaths. Although somatic VHL mutations have been described for some time, more-recent cancer genomic studies have identified mutations in epigenetic regulatory genes and demonstrated marked intra-tumour heterogeneity, which could have prognostic, predictive and therapeutic relevance. Localized RCC can be successfully managed with surgery, whereas metastatic RCC is refractory to conventional chemotherapy. However, over the past decade, marked advances in the treatment of metastatic RCC have been made, with targeted agents including sorafenib, sunitinib, bevacizumab, pazopanib and axitinib, which inhibit vascular endothelial growth factor (VEGF) and its receptor (VEGFR), and everolimus and temsirolimus, which inhibit mechanistic target of rapamycin complex 1 (mTORC1), being approved. Since 2015, agents with additional targets aside from VEGFR have been approved, such as cabozantinib and lenvatinib; immunotherapies, such as nivolumab, have also been added to the armamentarium for metastatic RCC. Here, we provide an overview of the biology of RCC, with a focus on ccRCC, as well as updates to complement the current clinical guidelines and an outline of potential future directions for RCC research and therapy.

1,451 citations