scispace - formally typeset
Search or ask a question
Author

Yan Lin

Bio: Yan Lin is an academic researcher from Fudan University. The author has contributed to research in topics: Nonlinear system & Adaptive control. The author has an hindex of 46, co-authored 212 publications receiving 12169 citations. Previous affiliations of Yan Lin include University of California, Los Angeles & University of Nottingham.


Papers
More filters
Journal ArticleDOI
19 Feb 2010-Science
TL;DR: It is revealed that lysine acetylation is a prevalent modification in enzymes that catalyze intermediate metabolism, and plays a major role in metabolic regulation.
Abstract: Protein lysine acetylation has emerged as a key posttranslational modification in cellular regulation, in particular through the modification of histones and nuclear transcription regulators. We show that lysine acetylation is a prevalent modification in enzymes that catalyze intermediate metabolism. Virtually every enzyme in glycolysis, gluconeogenesis, the tricarboxylic acid (TCA) cycle, the urea cycle, fatty acid metabolism, and glycogen metabolism was found to be acetylated in human liver tissue. The concentration of metabolic fuels, such as glucose, amino acids, and fatty acids, influenced the acetylation status of metabolic enzymes. Acetylation activated enoyl–coenzyme A hydratase/3-hydroxyacyl–coenzyme A dehydrogenase in fatty acid oxidation and malate dehydrogenase in the TCA cycle, inhibited argininosuccinate lyase in the urea cycle, and destabilized phosphoenolpyruvate carboxykinase in gluconeogenesis. Our study reveals that acetylation plays a major role in metabolic regulation.

1,668 citations

Journal ArticleDOI
Yan Lin1, Shuzo Tanaka1
TL;DR: The prospects included are fermentation technology converting xylose to ethanol, cellulase enzyme utilized in the hydrolysis of lignocellulosic materials, immobilization of the microorganism in large systems, simultaneous saccharification and fermentation, and sugar conversion into ethanol.
Abstract: In recent years, growing attention has been devoted to the conversion of biomass into fuel ethanol, considered the cleanest liquid fuel alternative to fossil fuels. Significant advances have been made towards the technology of ethanol fermentation. This review provides practical examples and gives a broad overview of the current status of ethanol fermentation including biomass resources, microorganisms, and technology. Also, the promising prospects of ethanol fermentation are especially introduced. The prospects included are fermentation technology converting xylose to ethanol, cellulase enzyme utilized in the hydrolysis of lignocellulosic materials, immobilization of the microorganism in large systems, simultaneous saccharification and fermentation, and sugar conversion into ethanol.

1,610 citations

Journal ArticleDOI
10 Apr 2009-Science
TL;DR: IDH1 appears to function as a tumor suppressor that, when mutationally inactivated, contributes to tumorigenesis in part through induction of the HIF-1 pathway.
Abstract: Heterozygous mutations in the gene encoding isocitrate dehydrogenase-1 (IDH1) occur in certain human brain tumors, but their mechanistic role in tumor development is unknown. We have shown that tumor-derived IDH1 mutations impair the enzyme's affinity for its substrate and dominantly inhibit wild-type IDH1 activity through the formation of catalytically inactive heterodimers. Forced expression of mutant IDH1 in cultured cells reduces formation of the enzyme product, alpha-ketoglutarate (alpha-KG), and increases the levels of hypoxia-inducible factor subunit HIF-1alpha, a transcription factor that facilitates tumor growth when oxygen is low and whose stability is regulated by alpha-KG. The rise in HIF-1alpha levels was reversible by an alpha-KG derivative. HIF-1alpha levels were higher in human gliomas harboring an IDH1 mutation than in tumors without a mutation. Thus, IDH1 appears to function as a tumor suppressor that, when mutationally inactivated, contributes to tumorigenesis in part through induction of the HIF-1 pathway.

1,078 citations

Journal ArticleDOI
19 Feb 2010-Science
TL;DR: It is demonstrated that central metabolism enzymes in Salmonella were acetylated extensively and differentially in response to different carbon sources, concomitantly with changes in cell growth and metabolic flux.
Abstract: Lysine acetylation regulates many eukaryotic cellular processes, but its function in prokaryotes is largely unknown. We demonstrated that central metabolism enzymes in Salmonella were acetylated extensively and differentially in response to different carbon sources, concomitantly with changes in cell growth and metabolic flux. The relative activities of key enzymes controlling the direction of glycolysis versus gluconeogenesis and the branching between citrate cycle and glyoxylate bypass were all regulated by acetylation. This modulation is mainly controlled by a pair of lysine acetyltransferase and deacetylase, whose expressions are coordinated with growth status. Reversible acetylation of metabolic enzymes ensure that cells respond environmental changes via promptly sensing cellular energy status and flexibly altering reaction rates or directions. It represents a metabolic regulatory mechanism conserved from bacteria to mammals.

933 citations

Journal ArticleDOI
Ren Zhang, Yan Lin1
TL;DR: Five years after it was constructed, DEG 5.0 has significant advances over the 2004 version in both the number of essential genes and thenumber of organisms in which these genes are determined, and represents the rapid progress of the essential-gene field.
Abstract: Essential genes are those indispensable for the survival of an organism, and their functions are therefore considered a foundation of life. Determination of a minimal gene set needed to sustain a life form, a fundamental question in biology, plays a key role in the emerging field, synthetic biology. Five years after we constructed DEG, a database of essential genes, DEG 5.0 has significant advances over the 2004 version in both the number of essential genes and the number of organisms in which these genes are determined. The number of prokaryotic essential genes in DEG has increased about 10-fold, mainly owing to genome-wide gene essentiality screens performed in a wide range of bacteria. The number of eukaryotic essential genes has increased more than 5-fold, because DEG 1.0 only had yeast ones, but DEG 5.0 also has those in humans, mice, worms, fruit flies, zebrafish and the plant Arabidopsis thaliana. These updates not only represent significant advances of DEG, but also represent the rapid progress of the essential-gene field. DEG is freely available at the website http://tubic.tju.edu.cn/deg or http://www.essentialgene.org.

485 citations


Cited by
More filters
Journal ArticleDOI
29 Mar 2013-Science
TL;DR: This work has revealed the genomic landscapes of common forms of human cancer, which consists of a small number of “mountains” (genes altered in a high percentage of tumors) and a much larger number of "hills" (Genes altered infrequently).
Abstract: Over the past decade, comprehensive sequencing efforts have revealed the genomic landscapes of common forms of human cancer. For most cancer types, this landscape consists of a small number of “mountains” (genes altered in a high percentage of tumors) and a much larger number of “hills” (genes altered infrequently). To date, these studies have revealed ~140 genes that, when altered by intragenic mutations, can promote or “drive” tumorigenesis. A typical tumor contains two to eight of these “driver gene” mutations; the remaining mutations are passengers that confer no selective growth advantage. Driver genes can be classified into 12 signaling pathways that regulate three core cellular processes: cell fate, cell survival, and genome maintenance. A better understanding of these pathways is one of the most pressing needs in basic cancer research. Even now, however, our knowledge of cancer genomes is sufficient to guide the development of more effective approaches for reducing cancer morbidity and mortality.

6,441 citations

Journal ArticleDOI
TL;DR: Interest in the topic of tumour metabolism has waxed and waned over the past century, but it has become clear that many of the signalling pathways that are affected by genetic mutations and the tumour microenvironment have a profound effect on core metabolism, making this topic once again one of the most intense areas of research in cancer biology.
Abstract: Interest in the topic of tumour metabolism has waxed and waned over the past century of cancer research. The early observations of Warburg and his contemporaries established that there are fundamental differences in the central metabolic pathways operating in malignant tissue. However, the initial hypotheses that were based on these observations proved inadequate to explain tumorigenesis, and the oncogene revolution pushed tumour metabolism to the margins of cancer research. In recent years, interest has been renewed as it has become clear that many of the signalling pathways that are affected by genetic mutations and the tumour microenvironment have a profound effect on core metabolism, making this topic once again one of the most intense areas of research in cancer biology.

4,169 citations

Journal ArticleDOI
10 Dec 2009-Nature
TL;DR: It is shown that cancer-associated IDH1 mutations result in a new ability of the enzyme to catalyse the NADPH-dependent reduction of α-ketoglutarate to R(-)-2-hydroxyglutarate (2HG), and that the excess 2HG which accumulates in vivo contributes to the formation and malignant progression of gliomas.
Abstract: Mutations in the enzyme cytosolic isocitrate dehydrogenase 1 (IDH1) are a common feature of a major subset of primary human brain cancers. These mutations occur at a single amino acid residue of the IDH1 active site, resulting in loss of the enzyme's ability to catalyse conversion of isocitrate to alpha-ketoglutarate. However, only a single copy of the gene is mutated in tumours, raising the possibility that the mutations do not result in a simple loss of function. Here we show that cancer-associated IDH1 mutations result in a new ability of the enzyme to catalyse the NADPH-dependent reduction of alpha-ketoglutarate to R(-)-2-hydroxyglutarate (2HG). Structural studies demonstrate that when arginine 132 is mutated to histidine, residues in the active site are shifted to produce structural changes consistent with reduced oxidative decarboxylation of isocitrate and acquisition of the ability to convert alpha-ketoglutarate to 2HG. Excess accumulation of 2HG has been shown to lead to an elevated risk of malignant brain tumours in patients with inborn errors of 2HG metabolism. Similarly, in human malignant gliomas harbouring IDH1 mutations, we find markedly elevated levels of 2HG. These data demonstrate that the IDH1 mutations result in production of the onco-metabolite 2HG, and indicate that the excess 2HG which accumulates in vivo contributes to the formation and malignant progression of gliomas.

3,508 citations

Journal ArticleDOI
TL;DR: It is argued that altered metabolism has attained the status of a core hallmark of cancer.

2,623 citations