scispace - formally typeset
Search or ask a question
Author

Yan Wang

Bio: Yan Wang is an academic researcher from Nankai University. The author has contributed to research in topics: Medicine & X-ray photoelectron spectroscopy. The author has an hindex of 23, co-authored 51 publications receiving 2890 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a template-free, economical hydrothermal method combined with subsequent calcination was used to synthesize hierarchical three-dimensional (3D) porous ZnO architectures.
Abstract: Hierarchically three-dimensional (3D) porous ZnO architectures were synthesized by a template-free, economical hydrothermal method combined with subsequent calcination. First, a precursor of hierarchical basic zinc carbonate (BZC) nanostructures self-assembled by sheet-like blocks was prepared. Then calcination of the precursor produced hierarchically 3D porous ZnO architectures composed of interconnected ZnO nanosheets with high porosity resulting from the thermal decomposition of the precursor. The products were characterized by X-ray diffraction, Fourier tranform infrared spectroscopy, thermogravimetric−differential thermalgravimetric analysis, scanning electron microscopy, transmission electron microscopy, and Brunauer−Emmett−Teller N2 adsorption−desorption analyses. Control experiments with variations in solvent and reaction time respectively revealed that ethanol was responsible for the formation of the BZC precursor, and the self-assembly of BZC nanosheets into hierarchically 3D architectures was h...

330 citations

Journal ArticleDOI
TL;DR: In this paper, pure and Au-doped WO3 powders for NO2 gas detection were prepared by a colloidal chemical method, and characterized via X-ray powder diffraction (XRD), transmission electron microscopy (TEM), and Xray photoelectron spectroscopy (XPS).
Abstract: Pure and Au-doped WO3 powders for NO2 gas detection were prepared by a colloidal chemical method, and characterized via X-ray powder diffraction (XRD), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The NO2 sensing properties of the sensors based on pure and Au-doped WO3 powders were investigated by HW-30A gas sensing measurement. The results showed that the gas sensing properties of the doped WO3 sensors were superior to those of the undoped one. Especially, the 1.0 wt% Au-doped WO3 sensor possessed larger response, better selectivity, faster response/recovery and better longer term stability to NO2 than the others at relatively low operating temperature (150 °C).

239 citations

Journal ArticleDOI
TL;DR: In this article, a polypyrrole-coated SnO2 hollow spheres hybrid materials have been synthesized through an in situ polymerization of pyrrole monomers in the presence of preprepared hollow spheres.
Abstract: Polypyrrole-coated SnO2 hollow spheres hybrid materials have been synthesized through an in situ polymerization of pyrrole monomers in the presence of preprepared SnO2 hollow spheres. The hybrids were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectrometer (FTIR), and thermogravimetric analysis (TG). Experimental data showed certain synergetic interaction existed in the hybrids, probably resulting in the enhanced thermal stability of polypyrrole coatings. Gas sensing tests showed that the hybrids possessed very fast response and high sensitivity to ammonia gas at room temperature, implying its potential application for gas sensors.

220 citations

Journal ArticleDOI
Jianliang Cao1, Yan Wang1, Xiu-Ling Yu1, Shurong Wang1, Shihua Wu1, Zhong-Yong Yuan1 
TL;DR: In this paper, a series of mesoporous CuO-Fe 2 O 3 composite oxide catalysts with different CuO contents were prepared by a surfactant-assisted method of nanoparticle assembly.
Abstract: A series of mesoporous CuO–Fe 2 O 3 composite oxide catalysts with different CuO contents were prepared by a surfactant-assisted method of nanoparticle assembly. The prepared composite oxides were characterized by X-ray diffraction, N 2 adsorption, transmission electron microscopy, hydrogen temperature-programmed reduction, thermogravimetry–differential thermal analysis and X-ray photoelectron spectroscopy. Their catalytic behavior for low-temperature CO oxidation was studied by using a microreactor-GC system. These mesoporous CuO–Fe 2 O 3 catalysts possess a wormhole-like mesostructure with a narrow pore size distribution and high surface area, exhibiting high catalytic activity and stability for low-temperature CO oxidation. The catalytic behavior depended on the CuO content, the precalcination temperature, the surface area and the particle size of the catalysts. The catalyst with 15 mol% CuO content and calcined at 300 °C exhibited the highest catalytic activity and stability.

208 citations

Journal ArticleDOI
TL;DR: In this paper, a gas sensor was fabricated from as-prepared ZnO hollow spheres and tested to different concentrations of NH3 and NO2 at different operating temperatures, and the results showed that the sensor exhibited extremely different sensing behaviors.
Abstract: ZnO hollow spheres were successfully prepared by using carbon microspheres as templates and characterized by X-ray diffraction (XRD) analysis, scanning electron microscope (SEM), transmission electron microscope (TEM) and selected area electron diffraction (SAED). A gas sensor was fabricated from the as-prepared ZnO hollow spheres and tested to different concentrations of NH3 and NO2 at different operating temperatures. The results showed that the ZnO hollow-sphere sensor exhibited extremely different sensing behaviors to NH3 and NO2. The optimum operating temperature of the sensor was 220 °C for NH3 and 240 °C for NO2, respectively. At 220 °C, the responses to 25, 50 and 75 ppm NH3 were 7.9, 11.1 and 20.4 and the response times were as long as several minutes. At 240 °C, the responses to 10, 50 and 100 ppm NO2 were 140.6, 172.8 and 286.8 and the corresponding response times were 31, 19 and 9 s. In addition, it is also shown that the gas sensor exhibited much higher response to NO2 than to other gases at 240 °C, implying the good selectivity and potential application of the sensor for detecting NO2.

183 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, high performance gas sensors prepared using p-type oxide semiconductors such as NiO, CuO, Cr2O3, Co3O4, and Mn3O3 were reviewed.
Abstract: High-performance gas sensors prepared using p-type oxide semiconductors such as NiO, CuO, Cr2O3, Co3O4, and Mn3O4 were reviewed. The ionized adsorption of oxygen on p-type oxide semiconductors leads to the formation of hole-accumulation layers (HALs), and conduction occurs mainly along the near-surface HAL. Thus, the chemoresistive variations of undoped p-type oxide semiconductors are lower than those induced at the electron-depletion layers of n-type oxide semiconductors. However, highly sensitive and selective p-type oxide-semiconductor-based gas sensors can be designed either by controlling the carrier concentration through aliovalent doping or by promoting the sensing reaction of a specific gas through doping/loading the sensor material with oxide or noble metal catalysts. The junction between p- and n-type oxide semiconductors fabricated with different contact configurations can provide new strategies for designing gas sensors. p-Type oxide semiconductors with distinctive surface reactivity and oxygen adsorption are also advantageous for enhancing gas selectivity, decreasing the humidity dependence of sensor signals to negligible levels, and improving recovery speed. Accordingly, p-type oxide semiconductors are excellent materials not only for fabricating highly sensitive and selective gas sensors but also valuable additives that provide new functionality in gas sensors, which will enable the development of high-performance gas sensors.

1,642 citations

Journal ArticleDOI
TL;DR: In this article, the analysis of various parameters of metal oxides and the search of criteria, which could be used during material selection for solid-state gas sensor applications, were the main objectives of this review.
Abstract: The analysis of various parameters of metal oxides and the search of criteria, which could be used during material selection for solid-state gas sensor applications, were the main objectives of this review. For these purposes the correlation between electro-physical (band gap, electroconductivity, type of conductivity, oxygen diffusion), thermodynamic, surface, electronic, structural properties, catalytic activity and gas-sensing characteristics of metal oxides designed for solid-state sensors was established. It has been discussed the role of metal oxide manufacturability, chemical activity, and parameter's stability in sensing material choice as well.

1,334 citations

Journal ArticleDOI
Jong Heun Lee1
TL;DR: In this article, the authors show that hierarchical and hollow oxide nanostructures increase both the gas response and response speed simultaneously and substantially, which can be explained by the rapid and effective gas diffusion toward the entire sensing surfaces via the porous structures.
Abstract: Hierarchical and hollow oxide nanostructures are very promising gas sensor materials due to their high surface area and well-aligned nanoporous structures with a less agglomerated configurations. Various synthetic strategies to prepare such hierarchical and hollow structures for gas sensor applications are reviewed and the principle parameters and mechanisms to enhance the gas sensing characteristics are investigated. The literature data clearly show that hierarchical and hollow nanostructures increase both the gas response and response speed simultaneously and substantially. This can be explained by the rapid and effective gas diffusion toward the entire sensing surfaces via the porous structures. Finally, the impact of highly sensitive and fast responding gas sensors using hierarchical and hollow nanostructures on future research directions is discussed.

1,330 citations

Journal ArticleDOI
TL;DR: The most important advances with regard to fundamental research, sensing mechanisms, and application of nanostructured materials for room-temperature conductometric sensor devices are reviewed here and particular emphasis is given to the relation between the nanostructure and sensor properties in an attempt to address structure-property correlations.
Abstract: Sensor technology has an important effect on many aspects in our society, and has gained much progress, propelled by the development of nanoscience and nanotechnology. Current research efforts are directed toward developing high-performance gas sensors with low operating temperature at low fabrication costs. A gas sensor working at room temperature is very appealing as it provides very low power consumption and does not require a heater for high-temperature operation, and hence simplifies the fabrication of sensor devices and reduces the operating cost. Nanostructured materials are at the core of the development of any room-temperature sensing platform. The most important advances with regard to fundamental research, sensing mechanisms, and application of nanostructured materials for room-temperature conductometric sensor devices are reviewed here. Particular emphasis is given to the relation between the nanostructure and sensor properties in an attempt to address structure-property correlations. Finally, some future research perspectives and new challenges that the field of room-temperature sensors will have to address are also discussed.

1,096 citations

Journal ArticleDOI
TL;DR: Recent progress in the applications of hierarchically structured porous materials from energy conversion and storage, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine is reviewed and could stimulate researchers to synthesize new advanced hierarchically porous solids.
Abstract: Over the last decade, significant effort has been devoted to the applications of hierarchically structured porous materials owing to their outstanding properties such as high surface area, excellent accessibility to active sites, and enhanced mass transport and diffusion. The hierarchy of porosity, structural, morphological and component levels in these materials is key for their high performance in all kinds of applications. The introduction of hierarchical porosity into materials has led to a significant improvement in the performance of materials. Herein, recent progress in the applications of hierarchically structured porous materials from energy conversion and storage, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine is reviewed. Their potential future applications are also highlighted. We particularly dwell on the relationship between hierarchically porous structures and properties, with examples of each type of hierarchically structured porous material according to its chemical composition and physical characteristics. The present review aims to open up a new avenue to guide the readers to quickly obtain in-depth knowledge of applications of hierarchically porous materials and to have a good idea about selecting and designing suitable hierarchically porous materials for a specific application. In addition to focusing on the applications of hierarchically porous materials, this comprehensive review could stimulate researchers to synthesize new advanced hierarchically porous solids.

1,052 citations