scispace - formally typeset
Search or ask a question
Author

Yanan Guo

Bio: Yanan Guo is an academic researcher. The author has contributed to research in topics: Angiogenesis & Non-coding RNA. The author has co-authored 2 publications.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors classified and summarized the anti-angiogenic natural agents (Polyphenols, Polysaccharides, Alkaloids, Terpenoids, Saponins) in targeting various tumor types according to their chemical structures, and discussed the mechanistic principles of these natural products on regulating angiogenesis-associated cytokines and apoptotic signaling pathways.
Abstract: Tumor-associated angiogenesis is a key target for anti-cancer therapy. The imbalance between pro-angiogenic and anti-angiogenic signals elicited by tumor cells or tumor microenvironment always results in activating "angiogenic switch". Tumor angiogenesis functions in multi-aspects of tumor biology, including endothelial cell apoptosis, tumor metastasis, and cancer stem cell proliferation. Numerous studies have indicated the important roles of inexpensive and less toxic natural products in targeting tumor angiogenesis-associated cytokines and apoptotic signaling pathways. Our current knowledge of tumor angiogenesis is based mainly on experiments performed on cells and animals, so we summarized the well-established models for angiogenesis both in vitro and in vivo. In this review, we classified and summarized the anti-angiogenic natural agents (Polyphenols, Polysaccharides, Alkaloids, Terpenoids, Saponins) in targeting various tumor types according to their chemical structures at present, and discussed the mechanistic principles of these natural products on regulating angiogenesis-associated cytokines and apoptotic signaling pathways. This review is to help understanding the recent progress of natural product research for drug development on anti-tumor angiogenesis.

13 citations

Journal ArticleDOI
TL;DR: In this paper, a review of the biological functions of non-coding RNAs and their regulatory mechanisms in tumor angiogenesis is presented. But the authors do not provide new insights for the research of ncRNAs.
Abstract: Non-coding RNAs (ncRNAs) are RNAs that do not encode proteins, but perform biological functions in various physiological and pathological processes, including cancer formation, inflammation, and neurological diseases. Tumor blood vessels are a key target for cancer management. A number of factors regulate the angiogenesis of malignant tumors. NcRNAs participate in the regulation of tumor angiogenesis. Abnormal expression of ncRNAs act as tumor suppressors or oncogenes to affect the development of tumors. In this review we summarized the biological functions of ncRNAs, and discussed its regulatory mechanisms in tumor angiogenesis. This article will provide new insights for the research of ncRNAs in tumor angiogenesis.

4 citations


Cited by
More filters
Journal ArticleDOI
29 Jul 2022-ACS Nano
TL;DR: In this article , a smart therapeutic nanoplatform is constructed by surface immobilization of glucose oxidase (GOx) onto a TiO2@Pt Schottky junction.
Abstract: To date, the construction of heterogeneous interfaces between sonosensitizers and other semiconductors or noble metals has aroused increasing attention, owing to an enhanced interface charge transfer, augmented spin-flip, and attenuated activation energy of oxygen. Here, a smart therapeutic nanoplatform is constructed by surface immobilization of glucose oxidase (GOx) onto a TiO2@Pt Schottky junction. The sonodynamic therapy (SDT) and starvation therapy (ST) mediated by TiO2@Pt/GOx (TPG) promote systemic tumor suppression upon hypoxia alleviation in tumor microenvironment. The band gap of TiO2@Pt is outstandingly decreased to 2.9 eV, in contrast to that of pristine TiO2. The energy structure optimization enables a more rapid generation of singlet oxygen (1O2) and hydroxyl radicals (•OH) by TiO2@Pt under ultrasound irradiation, resulting from an enhanced separation of hole-electron pair for redox utilization. The tumorous reactive oxygen species (ROS) accumulation and GOx-mediated glucose depletion facilitate oxidative damage and energy exhaustion of cancer cells, both of which can be tremendously amplified by Pt-catalyzed oxygen self-supply. Importantly, the combinatorial therapy triggers intense immunogenetic cell death, which favors a follow-up suppression of distant tumor and metastasis by evoking antitumor immunity. Collectively, this proof-of-concept paradigm provides an insightful strategy for highly efficient SDT/ST, which possesses good clinical potential for tackling cancer.

20 citations

Journal ArticleDOI
TL;DR: Current knowledge of the molecular etiology of endometriosis-associated angiogenesis is examined and anti-angiogenic therapy is discussed as potential non-hormonal therapy for the treatment of endometricriosis.
Abstract: Endometriosis is a known estrogen-dependent inflammatory disease affecting reproductive-aged women. Common symptoms include pelvic pain, dysmenorrhea, dyspareunia, heavy menstrual bleeding, and infertility. The exact etiology of endometriosis is largely unknown, and, thus, the diagnosis and treatment of endometriosis are challenging. A complex interplay of many molecular mechanisms is thought to aid in the progression of endometriosis, most notably angiogenesis. This mini-review examines our current knowledge of the molecular etiology of endometriosis-associated angiogenesis and discusses anti-angiogenic therapy, in the blockade of endometriosis-associated angiogenesis, as potential non-hormonal therapy for the treatment of endometriosis.

12 citations

Journal ArticleDOI
TL;DR: This work classifies the receptors by their structures and functions, illustrates the natural compounds targeting these receptors and discusses the mechanisms of their anti-cancer activities.
Abstract: Receptors are macromolecules that transmit information regulating cell proliferation, differentiation, migration and apoptosis, play key roles in oncogenic processes and correlate with the prognoses of cancer patients. Thus, targeting receptors to constrain cancer development and progression has gained widespread interest. Small molecule compounds of natural origin have been widely used as drugs or adjuvant chemotherapeutic agents in cancer therapies due to their activities of selectively killing cancer cells, alleviating drug resistance and mitigating side effects. Meanwhile, many natural compounds, including those targeting receptors, are still under laboratory investigation for their anti-cancer activities and mechanisms. In this review, we classify the receptors by their structures and functions, illustrate the natural compounds targeting these receptors and discuss the mechanisms of their anti-cancer activities. We aim to provide primary knowledge of mechanistic regulation and clinical applications of cancer therapies through targeting deregulated receptors.

5 citations

Journal ArticleDOI
TL;DR: In this paper , the authors discuss the use of non-coding RNA (ncRNA) as biomarkers for ovarian cancer prognosis, focusing on the recent advances of ncRNAs as therapeutic targets in preventing OC metastasis, chemoresistance, immune escape, and metabolism.
Abstract: Ovarian cancer (OC) is the third most common gynecological malignancy with the highest mortality worldwide. OC is usually diagnosed at an advanced stage, and the standard treatment is surgery combined with platinum or paclitaxel chemotherapy. However, chemoresistance inevitably appears coupled with the easy recurrence and poor prognosis. Thus, early diagnosis, predicting prognosis, and reducing chemoresistance are of great significance for controlling the progression and improving treatment effects of OC. Recently, much insight has been gained into the non-coding RNA (ncRNA) that is employed for RNAs but does not encode a protein, and many types of ncRNAs have been characterized including long-chain non-coding RNAs, microRNAs, and circular RNAs. Accumulating evidence indicates these ncRNAs play very active roles in OC progression and metastasis. In this review, we briefly discuss the ncRNAs as biomarkers for OC prognosis. We focus on the recent advances of ncRNAs as therapeutic targets in preventing OC metastasis, chemoresistance, immune escape, and metabolism. The novel strategies for ncRNAs-targeted therapy are also exploited for improving the survival of OC patients.

4 citations

Journal ArticleDOI
TL;DR: This review will focus on the crosstalk between cancer cells and TAMs mediated by microRNAs and long non-coding RNAs during breast cancer (BC) initiation and progression.
Abstract: Non-coding RNAs (ncRNAs) play a pivotal role in regulating the tumor microenvironment (TME) by controlling gene expression at multiple levels. In tumors, ncRNAs can mediate the crosstalk between cancer cells and other cells in the TME, such as immune cells, stromal cells, and endothelial cells, influencing tumor development and progression. Tumor-associated macrophages (TAMs) are among the most abundant inflammatory cells infiltrating solid cancers that promote tumorigenesis, and their infiltration correlates with a poor prognosis in many tumors. Cancer cells produce different ncRNAs that orchestrate TAM recruitment and polarization toward a tumor-promoting phenotype. Tumor-reprogrammed macrophages shape the TME by promoting angiogenesis and tissue remodeling, and suppressing the anti-tumor activity of adaptive immune cells. TAMs can also produce ncRNA molecules that boost cancer cell proliferation and direct their phenotype and metabolic changes facilitating cancer progression and metastasis. This review will focus on the crosstalk between cancer cells and TAMs mediated by microRNAs and long non-coding RNAs during breast cancer (BC) initiation and progression.

4 citations