scispace - formally typeset
Search or ask a question
Author

Yang Bai

Bio: Yang Bai is an academic researcher from University of Science and Technology Beijing. The author has contributed to research in topics: Electrocaloric effect & Ferrite (magnet). The author has an hindex of 35, co-authored 145 publications receiving 3771 citations. Previous affiliations of Yang Bai include Hong Kong Polytechnic University & Tsinghua University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a materials design strategy combining a machine learning (ML) surrogate model with experimental design algorithms to search for high entropy alloys (HEAs) with large hardness in a model Al-Co-Cr-Cu-Fe-Ni system was proposed.

387 citations

Journal ArticleDOI
TL;DR: In this paper, the electrocaloric effect (ECE) of lead-free ferroelectric ceramics was characterized via P-T curves under different electric fields, which indicated that the NBT has an abnormal ECE with a negative temperature change (ΔT140 −−0.33 −kV/cm) opposite to that of the normal ferroelectrics.

240 citations

Journal ArticleDOI
TL;DR: In this paper, a genetic algorithm was used to select the ML model and materials descriptors from a huge number of alternatives and demonstrated its efficiency on two phase formation problems in high entropy alloys (HEAs).

188 citations

Journal ArticleDOI
TL;DR: In this article, the electrocaloric effect of BaTiO3 multilayer thin film structure was investigated by direct measurement and theoretical calculation, which showed a much higher EC effect of 0.91 J/g at 80°C under the same electric field.
Abstract: The electrocaloric (EC) effect of BaTiO3 multilayer thick film structure was investigated by direct measurement and theoretical calculation. The samples were prepared by the tape-casting method, which had 180 dielectric layers with an average thickness of 1.4 μm. The thermodynamic calculation based on the polarization-temperature curves predicted a peak heat adsorption of 0.32 J/g at 80 °C under 176 kV/cm electric field. The direct measurement via differential scanning calorimeter showed a much higher EC effect of 0.91 J/g at 80 °C under same electric field. The difference could result from the different trends of changes of electric polarization and lattice elastic energy under ultrahigh electric field.

167 citations

Journal ArticleDOI
TL;DR: In this paper, the phase diagram of lead-free BaHf x Ti 1−x O 3 (BHT) ferroelectric ceramics was established, and the electrocaloric efficiency (ΔT/ΔE ǫ = 0.35°C under 10kV/cm) was reported.

153 citations


Cited by
More filters
01 Sep 1955
TL;DR: In this paper, the authors restrict their attention to the ferrites and a few other closely related materials, which are more closely related to anti-ferromagnetic substances than they are to ferromagnetics in which the magnetization results from the parallel alignment of all the magnetic moments present.
Abstract: In this chapter, we will restrict our attention to the ferrites and a few other closely related materials. The great interest in ferrites stems from their unique combination of a spontaneous magnetization and a high electrical resistivity. The observed magnetization results from the difference in the magnetizations of two non-equivalent sub-lattices of the magnetic ions in the crystal structure. Materials of this type should strictly be designated as “ferrimagnetic” and in some respects are more closely related to anti-ferromagnetic substances than they are to ferromagnetics in which the magnetization results from the parallel alignment of all the magnetic moments present. We shall not adhere to this special nomenclature except to emphasize effects, which are due to the existence of the sub-lattices.

2,659 citations

Journal ArticleDOI
TL;DR: The most important members of the hexaferrite family are shown below, where Me = a small 2+ ion such as cobalt, nickel, or zinc, and Ba can be substituted by Sr: • M-type ferrites, such as BaFe12O19 (BaM or barium ferrite), SrFe 12O19(SrM or strontium ferite), and cobalt-titanium substituted M ferrite, Sr- or BaFe 12−2xCoxTixO19, or CoTiM as discussed by the authors.

1,855 citations

Journal ArticleDOI
TL;DR: This Review tries to summarize what remarkable progress in multiferroic magnetoelectric composite systems has been achieved in most recent few years, with emphasis on thin films; and to describe unsolved issues and new device applications which can be controlled both electrically and magnetically.
Abstract: Multiferroic magnetoelectric composite systems such as ferromagnetic-ferroelectric heterostructures have recently attracted an ever-increasing interest and provoked a great number of research activities, driven by profound physics from coupling between ferroelectric and magnetic orders, as well as potential applications in novel multifunctional devices, such as sensors, transducers, memories, and spintronics. In this Review, we try to summarize what remarkable progress in multiferroic magnetoelectric composite systems has been achieved in most recent few years, with emphasis on thin films; and to describe unsolved issues and new device applications which can be controlled both electrically and magnetically.

1,642 citations

Journal ArticleDOI
TL;DR: The resulting magnetocaloric, electrocaloric and mechanocaloric effects are compared here in terms of history, experimental method, performance and prospective cooling applications.
Abstract: A magnetically, electrically or mechanically responsive material can undergo significant thermal changes near a ferroic phase transition when its order parameter is modified by the conjugate applied field. The resulting magnetocaloric, electrocaloric and mechanocaloric (elastocaloric or barocaloric) effects are compared here in terms of history, experimental method, performance and prospective cooling applications.

1,101 citations