scispace - formally typeset
Search or ask a question
Author

Yang Gao

Bio: Yang Gao is an academic researcher from University of Surrey. The author has contributed to research in topics: Large Hadron Collider & Higgs boson. The author has an hindex of 168, co-authored 2047 publications receiving 146301 citations. Previous affiliations of Yang Gao include China Agricultural University & University of Kassel.


Papers
More filters
Journal ArticleDOI
S. Chatrchyan1, Vardan Khachatryan1, Albert M. Sirunyan1, Armen Tumasyan1  +3948 moreInstitutions (144)
21 Dec 2013
TL;DR: In this article, a search for the pair production of top squarks in events with a single isolated electron or muon, jets, large missing transverse momentum, and large transverse mass is presented.
Abstract: This paper presents a search for the pair production of top squarks in events with a single isolated electron or muon, jets, large missing transverse momentum, and large transverse mass. The data sample corresponds to an integrated luminosity of 19.5 inverse femtobarns of pp collisions collected in 2012 by the CMS experiment at the LHC at a center-of-mass energy of sqrt(s) = 8 TeV. No significant excess in data is observed above the expectation from standard model processes. The results are interpreted in the context of supersymmetric models with pair production of top squarks that decay either to a top quark and a neutralino or to a bottom quark and a chargino. For small mass values of the lightest supersymmetric particle, top-squark mass values up to around 650 GeV are excluded.

304 citations

Journal ArticleDOI
Georges Aad1, T. Abajyan2, Brad Abbott3, Jalal Abdallah4  +2885 moreInstitutions (169)
TL;DR: In this article, the electron reconstruction and identification efficiencies of the ATLAS detector at the LHC have been evaluated using proton-proton collision data collected in 2011 at TeV and corresponding to an integrated luminosity of 4.7 fb.
Abstract: Many of the interesting physics processes to be measured at the LHC have a signature involving one or more isolated electrons. The electron reconstruction and identification efficiencies of the ATLAS detector at the LHC have been evaluated using proton-proton collision data collected in 2011 at TeV and corresponding to an integrated luminosity of 4.7 fb. Tag-and-probe methods using events with leptonic decays of and bosons and mesons are employed to benchmark these performance parameters. The combination of all measurements results in identification efficiencies determined with an accuracy at the few per mil level for electron transverse energy greater than 30 GeV.

302 citations

Journal ArticleDOI
TL;DR: In this article, the angular and mass distributions of events in which the resonance decays to pairs of gauge bosons, $ZZ, WW, and $\gamma \gamma$.
Abstract: The experimental determination of the properties of the newly discovered boson at the Large Hadron Collider is currently the most crucial task in high energy physics. We show how information about the spin, parity, and, more generally, the tensor structure of the boson couplings can be obtained by studying angular and mass distributions of events in which the resonance decays to pairs of gauge bosons, $ZZ, WW$, and $\gamma \gamma$. A complete Monte Carlo simulation of the process $pp \to X \to VV \to 4f$ is performed and verified by comparing it to an analytic calculation of the decay amplitudes $X \to VV \to 4f$. Our studies account for all spin correlations and include general couplings of a spin $J=0,1,2$ resonance to Standard Model particles. We also discuss how to use angular and mass distributions of the resonance decay products for optimal background rejection. It is shown that by the end of the 8 TeV run of the LHC, it might be possible to separate extreme hypotheses of the spin and parity of the new boson with a confidence level of 99% or better for a wide range of models. We briefly discuss the feasibility of testing scenarios where the more » resonances is not a parity eigenstate. « less

302 citations

Journal ArticleDOI
TL;DR: In this paper, a search for events with jets and missing transverse energy is performed in a data sample of pp collisions collected at 7 TeV by the CMS experiment at the LHC.
Abstract: A search for events with jets and missing transverse energy is performed in a data sample of pp collisions collected at sqrt(s) = 7 TeV by the CMS experiment at the LHC. The analyzed data sample corresponds to an integrated luminosity of 1.14 inverse femtobarns. In this search, a kinematic variable, alphaT, is used as the main discriminator between events with genuine and misreconstructed missing transverse energy. No excess of events over the standard model expectation is found. Exclusion limits in the parameter space of the constrained minimal supersymmetric extension of the standard model are set. In this model, squark masses below 1.1 TeV are excluded at 95% CL. Gluino masses below 1.1 TeV are also ruled out at 95% CL for values of the universal scalar mass parameter below 500 GeV.

300 citations

Journal ArticleDOI
J. P. Lees1, V. Poireau1, E. Prencipe1, V. Tisserand1  +463 moreInstitutions (76)
TL;DR: In this article, the authors measured the gamma gamma* > pi0 transition form factor in the momentum transfer range from 4 to 40 GeV^2 with the BABAR detector at e+e-center-of-mass energies near 10.6 GeV.
Abstract: We study the reaction e+e- --> e+e-pi0 and measure the gamma gamma* --> pi0 transition form factor in the momentum transfer range from 4 to 40 GeV^2. The analysis is based on 442 fb^-1 of integrated luminosity collected at PEP-II with the BABAR detector at e+e- center-of-mass energies near 10.6 GeV.

297 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal Article
TL;DR: This book by a teacher of statistics (as well as a consultant for "experimenters") is a comprehensive study of the philosophical background for the statistical design of experiment.
Abstract: THE DESIGN AND ANALYSIS OF EXPERIMENTS. By Oscar Kempthorne. New York, John Wiley and Sons, Inc., 1952. 631 pp. $8.50. This book by a teacher of statistics (as well as a consultant for \"experimenters\") is a comprehensive study of the philosophical background for the statistical design of experiment. It is necessary to have some facility with algebraic notation and manipulation to be able to use the volume intelligently. The problems are presented from the theoretical point of view, without such practical examples as would be helpful for those not acquainted with mathematics. The mathematical justification for the techniques is given. As a somewhat advanced treatment of the design and analysis of experiments, this volume will be interesting and helpful for many who approach statistics theoretically as well as practically. With emphasis on the \"why,\" and with description given broadly, the author relates the subject matter to the general theory of statistics and to the general problem of experimental inference. MARGARET J. ROBERTSON

13,333 citations

Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

Journal ArticleDOI
Claude Amsler1, Michael Doser2, Mario Antonelli, D. M. Asner3  +173 moreInstitutions (86)
TL;DR: This biennial Review summarizes much of particle physics, using data from previous editions.

12,798 citations