scispace - formally typeset
Search or ask a question
Author

Yang Gao

Bio: Yang Gao is an academic researcher from University of Surrey. The author has contributed to research in topics: Large Hadron Collider & Higgs boson. The author has an hindex of 168, co-authored 2047 publications receiving 146301 citations. Previous affiliations of Yang Gao include China Agricultural University & University of Kassel.


Papers
More filters
Journal ArticleDOI
Georges Aad1, T. Abajyan2, Brad Abbott3, J. Abdallah4  +2914 moreInstitutions (169)
TL;DR: In this article, the jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector using proton-proton collision data with a centre-of-mass energy of [Formula: see text]TeV corresponding to an integrated luminosity of [formula] see text][formula:see text].
Abstract: The jet energy scale (JES) and its systematic uncertainty are determined for jets measured with the ATLAS detector using proton-proton collision data with a centre-of-mass energy of [Formula: see text] TeV corresponding to an integrated luminosity of [Formula: see text][Formula: see text]. Jets are reconstructed from energy deposits forming topological clusters of calorimeter cells using the anti-[Formula: see text] algorithm with distance parameters [Formula: see text] or [Formula: see text], and are calibrated using MC simulations. A residual JES correction is applied to account for differences between data and MC simulations. This correction and its systematic uncertainty are estimated using a combination of in situ techniques exploiting the transverse momentum balance between a jet and a reference object such as a photon or a [Formula: see text] boson, for [Formula: see text] and pseudorapidities [Formula: see text]. The effect of multiple proton-proton interactions is corrected for, and an uncertainty is evaluated using in situ techniques. The smallest JES uncertainty of less than 1 % is found in the central calorimeter region ([Formula: see text]) for jets with [Formula: see text]. For central jets at lower [Formula: see text], the uncertainty is about 3 %. A consistent JES estimate is found using measurements of the calorimeter response of single hadrons in proton-proton collisions and test-beam data, which also provide the estimate for [Formula: see text] TeV. The calibration of forward jets is derived from dijet [Formula: see text] balance measurements. The resulting uncertainty reaches its largest value of 6 % for low-[Formula: see text] jets at [Formula: see text]. Additional JES uncertainties due to specific event topologies, such as close-by jets or selections of event samples with an enhanced content of jets originating from light quarks or gluons, are also discussed. The magnitude of these uncertainties depends on the event sample used in a given physics analysis, but typically amounts to 0.5-3 %.

294 citations

Proceedings Article
S. Chatrchyan1, Khachatryan1, Albert M. Sirunyan1, Armen Tumasyan1  +2184 moreInstitutions (200)
31 Jul 2014

288 citations

Journal ArticleDOI
Georges Aad1, Georges Aad2, Brad Abbott3, Brad Abbott1  +5559 moreInstitutions (188)
TL;DR: In this paper, the performance of the missing transverse momentum reconstruction was evaluated using data collected in pp collisions at a centre-of-mass energy of 7 TeV in 2010.
Abstract: The measurement of missing transverse momentum in the ATLAS detector, described in this paper, makes use of the full event reconstruction and a calibration based on reconstructed physics objects. The performance of the missing transverse momentum reconstruction is evaluated using data collected in pp collisions at a centre-of-mass energy of 7 TeV in 2010. Minimum bias events and events with jets of hadrons are used from data samples corresponding to an integrated luminosity of about 0.3 nb(-1) and 600 nb(-1) respectively, together with events containing a Z boson decaying to two leptons (electrons or muons) or a W boson decaying to a lepton (electron or muon) and a neutrino, from a data sample corresponding to an integrated luminosity of about 36 pb(-1). An estimate of the systematic uncertainty on the missing transverse momentum scale is presented.

288 citations

Journal ArticleDOI
TL;DR: In this paper, the suppression of individual nS states in PbPb collisions with respect to their yields in pp data has been measured, and the results demonstrate the sequential suppression of the Υ(nS) states from the dimuon invariant mass spectra.
Abstract: The suppression of the individual Υ(nS) states in PbPb collisions with respect to their yields in pp data has been measured. The PbPb and pp data sets used in the analysis correspond to integrated luminosities of 150 μb^(-1) and 230 nb^(-1), respectively, collected in 2011 by the CMS experiment at the LHC, at a center-of-mass energy per nucleon pair of 2.76 TeV. The Υ(nS) yields are measured from the dimuon invariant mass spectra. The suppression of the Υ(nS) yields in PbPb relative to the yields in pp, scaled by the number of nucleon-nucleon collisions, R_(AA), is measured as a function of the collision centrality. Integrated over centrality, the R_(AA) values are 0.56±0.08(stat)±0.07(syst), 0.12±0.04(stat)±0.02(syst), and lower than 0.10 (at 95% confidence level), for the Υ(1S), Υ(2S), and Υ(3S) states, respectively. The results demonstrate the sequential suppression of the Υ(nS) states in PbPb collisions at LHC energies.

282 citations

Journal ArticleDOI
TL;DR: A brief description of the SLAC and KEK B Factories as well as their detectors, BaBar and Belle, and data taking related issues can be found in Part A of this book as mentioned in this paper.
Abstract: This work is on the Physics of the B Factories. Part A of this book contains a brief description of the SLAC and KEK B Factories as well as their detectors, BaBar and Belle, and data taking related issues. Part B discusses tools and methods used by the experiments in order to obtain results. The results themselves can be found in Part C. Please note that version 3 on the archive is the auxiliary version of the Physics of the B Factories book. This uses the notation alpha, beta, gamma for the angles of the Unitarity Triangle. The nominal version uses the notation phi_1, phi_2 and phi_3. Please cite this work as Eur. Phys. J. C74 (2014) 3026.

282 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal Article
TL;DR: This book by a teacher of statistics (as well as a consultant for "experimenters") is a comprehensive study of the philosophical background for the statistical design of experiment.
Abstract: THE DESIGN AND ANALYSIS OF EXPERIMENTS. By Oscar Kempthorne. New York, John Wiley and Sons, Inc., 1952. 631 pp. $8.50. This book by a teacher of statistics (as well as a consultant for \"experimenters\") is a comprehensive study of the philosophical background for the statistical design of experiment. It is necessary to have some facility with algebraic notation and manipulation to be able to use the volume intelligently. The problems are presented from the theoretical point of view, without such practical examples as would be helpful for those not acquainted with mathematics. The mathematical justification for the techniques is given. As a somewhat advanced treatment of the design and analysis of experiments, this volume will be interesting and helpful for many who approach statistics theoretically as well as practically. With emphasis on the \"why,\" and with description given broadly, the author relates the subject matter to the general theory of statistics and to the general problem of experimental inference. MARGARET J. ROBERTSON

13,333 citations

Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

Journal ArticleDOI
Claude Amsler1, Michael Doser2, Mario Antonelli, D. M. Asner3  +173 moreInstitutions (86)
TL;DR: This biennial Review summarizes much of particle physics, using data from previous editions.

12,798 citations