scispace - formally typeset
Search or ask a question
Author

Yang Han

Bio: Yang Han is an academic researcher from University of Electronic Science and Technology of China. The author has contributed to research in topics: Microgrid & Voltage droop. The author has an hindex of 12, co-authored 42 publications receiving 1326 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the adaptive/improved droop control, network-based control methods, and cost-based droop schemes are compared and summarized for active power sharing for islanded microgrids.
Abstract: Microgrids consist of multiple parallel-connected distributed generation (DG) units with coordinated control strategies, which are able to operate in both grid-connected and islanded modes Microgrids are attracting considerable attention since they can alleviate the stress of main transmission systems, reduce feeder losses, and improve system power quality When the islanded microgrids are concerned, it is important to maintain system stability and achieve load power sharing among the multiple parallel-connected DG units However, the poor active and reactive power sharing problems due to the influence of impedance mismatch of the DG feeders and the different ratings of the DG units are inevitable when the conventional droop control scheme is adopted Therefore, the adaptive/improved droop control, network-based control methods, and cost-based droop schemes are compared and summarized in this paper for active power sharing Moreover, nonlinear and unbalanced loads could further affect the reactive power sharing when regulating the active power, and it is difficult to share the reactive power accurately only by using the enhanced virtual impedance method Therefore, the hierarchical control strategies are utilized as supplements of the conventional droop controls and virtual impedance methods The improved hierarchical control approaches such as the algorithms based on graph theory, multi-agent system, the gain scheduling method, and predictive control have been proposed to achieve proper reactive power sharing for islanded microgrids and eliminate the effect of the communication delays on hierarchical control Finally, the future research trends on islanded microgrids are also discussed in this paper

593 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a survey of the performance evaluation among the state-of-the-art single-phase phase-locked loops (OSG-PLLs) under different grid disturbances such as voltage sags, phase, and frequency jumps, and in the presence of dc offset, harmonic components, and white noise in their input.
Abstract: The orthogonal-signal-generator-based phase-locked loops (OSG-PLLs) are among the most popular single-phase PLLs within the areas of power electronics and power systems, mainly because they are often easy to be implemented and offer a robust performance against the grid disturbances. The main aim of this paper is to present a survey of the comparative performance evaluation among the state-of-the-art OSG-PLLs (include Delay-PLL, Deri-PLL, Park-PLL, SOGI-PLL, DOEC-PLL, VTD-PLL, CCF-PLL, and TPFA-PLL) under different grid disturbances such as voltage sags, phase, and frequency jumps, and in the presence of dc offset, harmonic components, and white noise in their input. This analysis provides a useful insight about the advantages and disadvantages of these PLLs. The performance enhancement of Delay-PLL, Deri-PLL, and CCF-PLL by including a moving average filter into their structure is another goal of this paper.

272 citations

Journal ArticleDOI
TL;DR: In this paper, the authors proposed a multi-agent system (MAS)-based distributed coordinated control strategies to balance the power and energy, stabilize voltage and frequency, achieve economic and coordinated operation among the MGs and MGCs.
Abstract: The increasing integration of the distributed renewable energy sources highlights the requirement to design various control strategies for microgrids (MGs) and microgrid clusters (MGCs). The multiagent system (MAS)-based distributed coordinated control strategies show the benefits to balance the power and energy, stabilize voltage and frequency, achieve economic and coordinated operation among the MGs and MGCs. However, the complex and diverse combinations of distributed generations (DGs) in MAS increase the complexity of system control and operation. In order to design the optimized configuration and control strategy using MAS, the topology models and mathematic models such as the graph topology model, noncooperative game model, the genetic algorithm, and particle swarm optimization algorithm are summarized. The merits and drawbacks of these control methods are compared. Moreover, since the consensus is a vital problem in the complex dynamical systems, the distributed MAS-based consensus protocols are systematically reviewed. On the other hand, the communication delay issue, which is inevitable no matter in the low- or high-bandwidth communication networks, is crucial to maintain the stability of the MGs and MGCs with fixed and random delays. Various control strategies to compensate the effect of communication delays have been reviewed, such as the neural network-based predictive control, the weighted average predictive control, the gain scheduling scheme, and synchronization schemes based on the multitimer model for the case of fixed communication delay, and the generalized predictive control, networked predictive control, model predictive control, Smith predictor, $H_{\infty}$ -based control, sliding mode control for the random communication delay scenarios. Furthermore, various control methods have been summarized to describe switching topologies in MAS with different objectives, such as the plug-in or plug-out of DGs in an MG, and the plug-in or plug-out of MGs in an MGC, and multiagent-based energy coordination and the economic dispatch of the MGC. Finally, the future research directions of the multiagent-based distributed coordinated control and optimization in MGs and MGCs are also presented.

246 citations

Journal ArticleDOI
TL;DR: In this paper, an enhanced hierarchical control structure with multiple current loop damping schemes for voltage unbalance and harmonics compensation in ac islanded microgrid is proposed to address unequal power sharing problems.
Abstract: In this paper, an enhanced hierarchical control structure with multiple current loop damping schemes for voltage unbalance and harmonics compensation (UHC) in ac islanded microgrid is proposed to address unequal power sharing problems. The distributed generation (DG) is properly controlled to autonomously compensate voltage unbalance and harmonics while sharing the compensation effort for the real power, reactive power, and unbalance and harmonic powers. The proposed control system of the microgrid mainly consists of the positive sequence real and reactive power droop controllers, voltage and current controllers, the selective virtual impedance loop, the unbalance and harmonics compensators, the secondary control for voltage amplitude and frequency restoration, and the auxiliary control to achieve a high-voltage quality at the point of common coupling. By using the proposed unbalance and harmonics compensation, the auxiliary control, and the virtual positive/negative-sequence impedance loops at fundamental frequency, and the virtual variable harmonic impedance loop at harmonic frequencies, an accurate power sharing is achieved. Moreover, the low bandwidth communication (LBC) technique is adopted to send the compensation command of the secondary control and auxiliary control from the microgrid control center to the local controllers of DG unit. Finally, the hardware-in-the-loop results using dSPACE 1006 platform are presented to demonstrate the effectiveness of the proposed approach.

158 citations

Journal ArticleDOI
TL;DR: Various control approaches have been reviewed to match the impedance, such as the nonlinear disturbance observer (NDO) feedforward compensation method, linear programming algorithm, hybrid potential theory and linear system analysis of polyhedral uncertainty.
Abstract: In order to overcome the problem of power generation in distributed energy, microgrid(MG) emerges as an alternative scheme. Compared with the ac microgrids, the dc microgrids have the advantages of high system efficiency, good power quality, low cost, and simple control. However, due to the complexity of the distributed generation system, the conventional droop control shows the drawbacks of low current sharing accuracy. Therefore, the improved primary control methods to enhance current sharing accuracy are systematically reviewed, such as particle swarm optimization programming, probabilistic algorithm and voltage correction factor scheme. However, it is difficult to achieve stable and coordinated operation of the dc microgrids by relying on the primary control. Hence, the various secondary control approaches, such as dynamic current sharing scheme, muti-agent system (MAS) control and virtual voltage control methods have been summarized for voltage regulation. Furthermore, the energy management system (EMS), modular-based energy router (MBER) and other coordinated control methods are reviewed to achieve power management. Besides, various control methods to compensate the effect of communication delay are summarized. Moreover, linear matrix inequality (LMI), Lyapunov-Krasovskii functional stability and Takagi-Sugeno model prediction scheme can be adopted to eliminate the influence of communication delay. In addition, due to the constant power loads (CPL) exhibit negative impedance characteristics, which may result in the output oscillation of filter. Thus, various control approaches have been reviewed to match the impedance, such as the nonlinear disturbance observer (NDO) feedforward compensation method, linear programming algorithm, hybrid potential theory and linear system analysis of polyhedral uncertainty. The merits and drawbacks of those control strategies are compared in this paper. Finally, the future research trends of hierarchical control and stability in dc microgrids and dc microgrid clusters are also presented.

122 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors proposed a multi-agent system (MAS)-based distributed coordinated control strategies to balance the power and energy, stabilize voltage and frequency, achieve economic and coordinated operation among the MGs and MGCs.
Abstract: The increasing integration of the distributed renewable energy sources highlights the requirement to design various control strategies for microgrids (MGs) and microgrid clusters (MGCs). The multiagent system (MAS)-based distributed coordinated control strategies show the benefits to balance the power and energy, stabilize voltage and frequency, achieve economic and coordinated operation among the MGs and MGCs. However, the complex and diverse combinations of distributed generations (DGs) in MAS increase the complexity of system control and operation. In order to design the optimized configuration and control strategy using MAS, the topology models and mathematic models such as the graph topology model, noncooperative game model, the genetic algorithm, and particle swarm optimization algorithm are summarized. The merits and drawbacks of these control methods are compared. Moreover, since the consensus is a vital problem in the complex dynamical systems, the distributed MAS-based consensus protocols are systematically reviewed. On the other hand, the communication delay issue, which is inevitable no matter in the low- or high-bandwidth communication networks, is crucial to maintain the stability of the MGs and MGCs with fixed and random delays. Various control strategies to compensate the effect of communication delays have been reviewed, such as the neural network-based predictive control, the weighted average predictive control, the gain scheduling scheme, and synchronization schemes based on the multitimer model for the case of fixed communication delay, and the generalized predictive control, networked predictive control, model predictive control, Smith predictor, $H_{\infty}$ -based control, sliding mode control for the random communication delay scenarios. Furthermore, various control methods have been summarized to describe switching topologies in MAS with different objectives, such as the plug-in or plug-out of DGs in an MG, and the plug-in or plug-out of MGs in an MGC, and multiagent-based energy coordination and the economic dispatch of the MGC. Finally, the future research directions of the multiagent-based distributed coordinated control and optimization in MGs and MGCs are also presented.

246 citations

Journal ArticleDOI
TL;DR: In this paper, a study of the stability of grid-connected inverters with high grid impedance based on impedance analysis is presented, where the effects of the PLL loop and the digital control delays on the output impedance characteristics have been taken into account.
Abstract: A power distribution grid exhibits the characteristics of a weak grid owing to the existence of scattered high-power distributed power-generation devices. The grid impedance affects the robust stability of grid-connected inverters, leading to harmonic resonance, or even instability in the system. Therefore, a study of the stability of grid-connected inverters with high grid impedance based on impedance analysis is presented in this paper. The output impedance modeling of an LCL -type single-phase grid-connected inverter is derived, where the effects of the PLL loop and the digital control delays on the output impedance characteristics have been taken into account. To enhance the stability of grid-connected inverters with different grid impedance, a novel impedance-phased compensation control strategy is proposed by increasing the phase margin of the grid-connected inverters. Specifically, a detailed implementation and parameter design of the impedance-phased compensation control method is depicted. Finally, an impedance-phased dynamic control scheme combined with online grid impedance measurement is introduced and also verified by the experiment results.

225 citations

Journal ArticleDOI
TL;DR: All types of SC policies are reviewed and classify from CI-based methods to communication-free policies, including CSC, averaging-based DISC, consensus- based DISC methods, containment pinning consensus, event-triggeredDISC, washout-filter-based DESC, and state-estimation-basedDESC.
Abstract: Communication infrastructure (CI) in microgrids (MGs) allows for the application of different control architectures for the secondary control (SC) layer. The use of new SC architectures involving CI is motivated by the need to increase MG resilience and handle the intermittent nature of distributed generation units. The structure of SC is classified into three main categories, including centralized SC (CSC) with a CI, distributed SC (DISC) generally with a low-data-rate CI, and decentralized SC (DESC) with communication-free infrastructure. To meet the MGs’ operational constraints and optimize performance, control and communication must be utilized simultaneously in different control layers. In this survey, we review and classify all types of SC policies from CI-based methods to communication-free policies, including CSC, averaging-based DISC, consensus-based DISC methods, containment pinning consensus, event-triggered DISC, washout-filter-based DESC, and state-estimation-based DESC. Each structure is scrutinized from the viewpoint of the relevant literature. Challenges such as clock drifts, cyber-security threats, and the advantage of event-triggered approaches are presented. Fully decentralized approaches based on state-estimation and observation methods are also addressed. Although these approaches eliminate the need of any CI for the voltage and frequency restoration, during black start process or other functionalities related to the tertiary layer, a CI is required. Power hardware-in-the-loop experimental tests are carried out to compare the merits and applicability of different SC structures.

213 citations

Journal ArticleDOI
TL;DR: A comprehensive list of challenges and opportunities supported by a literature review on the evolution of converter-based microgrids is presented, describing the challenges and benefits of using DG units in a distribution network and then those of microgrid ones.

180 citations

Journal ArticleDOI
TL;DR: A review of the main design features of existing microgrids is undertaken in light of the experience gained during the realization of the Prince Lab microgrid at Polytechnic University of Bari, Italy, and the main control functions required to guarantee an economic, reliable and secure operation of a microgrid are reviewed.

170 citations