scispace - formally typeset
Search or ask a question
Author

Yang Liu

Bio: Yang Liu is an academic researcher from Nanyang Technological University. The author has contributed to research in topics: Encryption & Transfer of learning. The author has an hindex of 25, co-authored 91 publications receiving 5042 citations. Previous affiliations of Yang Liu include Princeton University & Air Products & Chemicals.


Papers
More filters
Journal ArticleDOI
TL;DR: This work introduces a comprehensive secure federated-learning framework, which includes horizontal federated learning, vertical federatedLearning, and federated transfer learning, and provides a comprehensive survey of existing works on this subject.
Abstract: Today’s artificial intelligence still faces two major challenges. One is that, in most industries, data exists in the form of isolated islands. The other is the strengthening of data privacy and security. We propose a possible solution to these challenges: secure federated learning. Beyond the federated-learning framework first proposed by Google in 2016, we introduce a comprehensive secure federated-learning framework, which includes horizontal federated learning, vertical federated learning, and federated transfer learning. We provide definitions, architectures, and applications for the federated-learning framework, and provide a comprehensive survey of existing works on this subject. In addition, we propose building data networks among organizations based on federated mechanisms as an effective solution to allowing knowledge to be shared without compromising user privacy.

2,593 citations

Journal ArticleDOI
23 Jun 2021
TL;DR: In this article, the authors describe the state-of-the-art in the field of federated learning from the perspective of distributed optimization, cryptography, security, differential privacy, fairness, compressed sensing, systems, information theory, and statistics.
Abstract: The term Federated Learning was coined as recently as 2016 to describe a machine learning setting where multiple entities collaborate in solving a machine learning problem, under the coordination of a central server or service provider. Each client’s raw data is stored locally and not exchanged or transferred; instead, focused updates intended for immediate aggregation are used to achieve the learning objective. Since then, the topic has gathered much interest across many different disciplines and the realization that solving many of these interdisciplinary problems likely requires not just machine learning but techniques from distributed optimization, cryptography, security, differential privacy, fairness, compressed sensing, systems, information theory, statistics, and more. This monograph has contributions from leading experts across the disciplines, who describe the latest state-of-the art from their perspective. These contributions have been carefully curated into a comprehensive treatment that enables the reader to understand the work that has been done and get pointers to where effort is required to solve many of the problems before Federated Learning can become a reality in practical systems. Researchers working in the area of distributed systems will find this monograph an enlightening read that may inspire them to work on the many challenging issues that are outlined. This monograph will get the reader up to speed quickly and easily on what is likely to become an increasingly important topic: Federated Learning.

2,144 citations

Posted Content
TL;DR: This work proposes building data networks among organizations based on federated mechanisms as an effective solution to allow knowledge to be shared without compromising user privacy.
Abstract: Today's AI still faces two major challenges. One is that in most industries, data exists in the form of isolated islands. The other is the strengthening of data privacy and security. We propose a possible solution to these challenges: secure federated learning. Beyond the federated learning framework first proposed by Google in 2016, we introduce a comprehensive secure federated learning framework, which includes horizontal federated learning, vertical federated learning and federated transfer learning. We provide definitions, architectures and applications for the federated learning framework, and provide a comprehensive survey of existing works on this subject. In addition, we propose building data networks among organizations based on federated mechanisms as an effective solution to allow knowledge to be shared without compromising user privacy.

1,317 citations

Posted Content
TL;DR: Motivated by the explosive growth in FL research, this paper discusses recent advances and presents an extensive collection of open problems and challenges.
Abstract: Federated learning (FL) is a machine learning setting where many clients (e.g. mobile devices or whole organizations) collaboratively train a model under the orchestration of a central server (e.g. service provider), while keeping the training data decentralized. FL embodies the principles of focused data collection and minimization, and can mitigate many of the systemic privacy risks and costs resulting from traditional, centralized machine learning and data science approaches. Motivated by the explosive growth in FL research, this paper discusses recent advances and presents an extensive collection of open problems and challenges.

1,107 citations

Journal ArticleDOI
19 Jun 2014-Nature
TL;DR: It is shown that two metastable liquid phases and a stable crystal phase exist at the same deeply supercooled thermodynamic condition, and that the transition between the two liquids satisfies the thermodynamic criteria of a first-order transition.
Abstract: A stable crystal phase and two metastable liquid phases of the ST2 model of water exist at the same deeply supercooled condition, and the two liquids undergo a first-order liquid–liquid transition that meets stringent thermodynamic criteria Water's anomalous physical properties become markedly enhanced upon supercooling below the freezing point and even seem to diverge towards infinity at around 228 K Two papers in this issue use contrasting techniques to study this little-explored 'no-man's land' of water where extremely fast ice formation has prohibited measurements of the liquid state Jonas Sellberg et al use femtosecond X-ray laser pulses to measure bulk liquid water structure in droplets evaporatively cooled to 227 K Even at this temperature some droplets remained liquid on a millisecond timescale Pushing this technique further can shed light on controversial scenarios that aim to describe and explain the many anomalous properties of water Jeremy Palmer et al use six advanced computational methods to demonstrate the existence of two metastable liquid phases of ST2 water at the same deeply supercooled condition, undergoing a liquid–liquid transition that meets stringent thermodynamic criteria and could explain the behavior of water in this regime Liquid water’s isothermal compressibility1 and isobaric heat capacity2, and the magnitude of its thermal expansion coefficient3, increase sharply on cooling below the equilibrium freezing point Many experimental4,5,6,7,8, theoretical9,10,11 and computational12,13 studies have sought to understand the molecular origin and implications of this anomalous behaviour Of the different theoretical scenarios9,14,15 put forward, one posits the existence of a first-order phase transition that involves two forms of liquid water and terminates at a critical point located at deeply supercooled conditions9,12 Some experimental evidence is consistent with this hypothesis4,16, but no definitive proof of a liquid–liquid transition in water has been obtained to date: rapid ice crystallization has so far prevented decisive measurements on deeply supercooled water, although this challenge has been overcome recently16 Computer simulations are therefore crucial for exploring water’s structure and behaviour in this regime, and have shown13,17,18,19,20,21 that some water models exhibit liquid–liquid transitions and others do not However, recent work22,23 has argued that the liquid–liquid transition has been mistakenly interpreted, and is in fact a liquid–crystal transition in all atomistic models of water Here we show, by studying the liquid–liquid transition in the ST2 model of water24 with the use of six advanced sampling methods to compute the free-energy surface, that two metastable liquid phases and a stable crystal phase exist at the same deeply supercooled thermodynamic condition, and that the transition between the two liquids satisfies the thermodynamic criteria of a first-order transition25 We follow the rearrangement of water’s coordination shell and topological ring structure along a thermodynamically reversible path from the low-density liquid to cubic ice26 We also show that the system fluctuates freely between the two liquid phases rather than crystallizing These findings provide unambiguous evidence for a liquid–liquid transition in the ST2 model of water, and point to the separation of time scales between crystallization and relaxation as being crucial for enabling it

456 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: This work introduces a comprehensive secure federated-learning framework, which includes horizontal federated learning, vertical federatedLearning, and federated transfer learning, and provides a comprehensive survey of existing works on this subject.
Abstract: Today’s artificial intelligence still faces two major challenges. One is that, in most industries, data exists in the form of isolated islands. The other is the strengthening of data privacy and security. We propose a possible solution to these challenges: secure federated learning. Beyond the federated-learning framework first proposed by Google in 2016, we introduce a comprehensive secure federated-learning framework, which includes horizontal federated learning, vertical federated learning, and federated transfer learning. We provide definitions, architectures, and applications for the federated-learning framework, and provide a comprehensive survey of existing works on this subject. In addition, we propose building data networks among organizations based on federated mechanisms as an effective solution to allowing knowledge to be shared without compromising user privacy.

2,593 citations

Book ChapterDOI
04 Oct 2019
TL;DR: Permission to copy without fee all or part of this material is granted provided that the copies arc not made or distributed for direct commercial advantage.
Abstract: Usually, a proof of a theorem contains more knowledge than the mere fact that the theorem is true. For instance, to prove that a graph is Hamiltonian it suffices to exhibit a Hamiltonian tour in it; however, this seems to contain more knowledge than the single bit Hamiltonian/non-Hamiltonian.In this paper a computational complexity theory of the “knowledge” contained in a proof is developed. Zero-knowledge proofs are defined as those proofs that convey no additional knowledge other than the correctness of the proposition in question. Examples of zero-knowledge proof systems are given for the languages of quadratic residuosity and 'quadratic nonresiduosity. These are the first examples of zero-knowledge proofs for languages not known to be efficiently recognizable.

1,962 citations

Posted Content
TL;DR: This work proposes building data networks among organizations based on federated mechanisms as an effective solution to allow knowledge to be shared without compromising user privacy.
Abstract: Today's AI still faces two major challenges. One is that in most industries, data exists in the form of isolated islands. The other is the strengthening of data privacy and security. We propose a possible solution to these challenges: secure federated learning. Beyond the federated learning framework first proposed by Google in 2016, we introduce a comprehensive secure federated learning framework, which includes horizontal federated learning, vertical federated learning and federated transfer learning. We provide definitions, architectures and applications for the federated learning framework, and provide a comprehensive survey of existing works on this subject. In addition, we propose building data networks among organizations based on federated mechanisms as an effective solution to allow knowledge to be shared without compromising user privacy.

1,317 citations