scispace - formally typeset
Search or ask a question
Author

Yang Yang

Bio: Yang Yang is an academic researcher from Chinese Academy of Sciences. The author has contributed to research in topics: Medicine & Computer science. The author has an hindex of 171, co-authored 2644 publications receiving 153049 citations. Previous affiliations of Yang Yang include Zhejiang University & Northwest Normal University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the optical properties of 2,4-Bis [4-(N,N-diisobutylamino)-2,6-dihydroxyphenyl] squaraine (SQ) were studied and a power conversion efficiency of 4.1% was achieved.
Abstract: 2,4-Bis[4-(N,N-diisobutylamino)-2,6-dihydroxyphenyl] squaraine (SQ) was employed as a donor material in organic photovoltaic cells based on planar heterojunctions. We studied optical properties of SQ films, and discussed its photovoltaic performance via numerical fitting and simulation on the photovoltaic cells. Exciton diffusion length (LD) in SQ films (4.5 nm) derived from optical simulation should be the major limitation to efficiency, consistent with external quantum efficiency data. Thermal treatment improved efficiency, which can be ascribed to reduced saturation current of the photovoltaic cells. As a result, a power conversion efficiency of 4.1% was achieved.

58 citations

Journal ArticleDOI
TL;DR: This study shows for the first time the systematic investigation of effects of Pd atomic shells on Pt-Pd bimetallic nanocatalysts, providing valuable guidelines for designing high-performance catalysts for fuel cell applications.
Abstract: Bimetallic Pt-Pd core-shell nanocrystals (NCs) are synthesized through a two-step process with controlled Pd thickness from sub-monolayer to multiple atomic layers. The oxygen reduction reaction (ORR) catalytic activity and methanol oxidation reactivity of the core-shell NCs for fuel cell applications in alkaline solution are systematically studied and compared based on different Pd thickness. It is found that the Pd shell helps to reduce the over-potential of ORR by up to 50mV when compared to commercial Pd black, while generating up to 3-fold higher kinetic current density. The carbon monoxide poisoning test shows that the bimetallic NCs are more resistant to the CO poisoning than Pt NCs and Pt black. It is also demonstrated that the bimetallic Pt-Pd core-shell NCs can enhance the current density of the methanol oxidation reaction, lowering the over-potential by 35 mV with respect to the Pt core NCs. Further investigation reveals that the Pd/Pt ratio of 1/3, which corresponds to nearly monolayer Pd deposition on Pt core NCs, gives the highest oxidation current density and lowest over-potential. This study shows for the first time the systematic investigation of effects of Pd atomic shells on Pt-Pd bimetallic nanocatalysts, providing valuable guidelines for designing high-performance catalysts for fuel cell applications.

58 citations

Journal ArticleDOI
TL;DR: In this article, the effect of Sb3+ dopants and the origin of bright emission by ultrafast transient absorption techniques was investigated in 0D lead-free perovskites.
Abstract: Zero-dimensional (0D) lead-free perovskites have unique structures and optoelectronic properties. Undoped and Sb-doped all inorganic, lead-free, 0D perovskite single crystals A2 InCl5 (H2 O) (A=Rb, Cs) are presented that exhibit greatly enhanced yellow emission. To study the effect of coordination H2 O, Sb-doped A3 InCl6 (A=Rb, Cs) are also synthesized and further studied. The photoluminescence (PL) color changes from yellow to green emission. Interestingly, the photoluminescence quantum yield (PLQY) realizes a great boost from <2 % to 85-95 % through doping Sb3+ . We further explore the effect of Sb3+ dopants and the origin of bright emission by ultrafast transient absorption techniques. Furthermore, Sb-doped 0D rubidium indium chloride perovskites show excellent stability. These findings not only provide a way to design a set of new high-performance 0D lead-free perovskites, but also reveal the relationship between structure and PL properties.

57 citations

Journal ArticleDOI
TL;DR: An efficient double-junction photovoltaic cell is demonstrated by employing an a-Si:H film as a front sub-cell and a low band gap polymer:fullerene blendFilm as a back cell on planar glass substrates.
Abstract: Ultrathin film photovoltaic cells are a promising energy device, but suffer from low power conversion efficiency. Here, the authors construct a double-junction tandem cell using a hydrogenated amorphous silicon and a polymer as the front and back cell, respectively, which achieves 10.5% efficiency.

57 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: This work reviews the historical development of Transition metal dichalcogenides, methods for preparing atomically thin layers, their electronic and optical properties, and prospects for future advances in electronics and optoelectronics.
Abstract: Single-layer metal dichalcogenides are two-dimensional semiconductors that present strong potential for electronic and sensing applications complementary to that of graphene.

13,348 citations