scispace - formally typeset
Search or ask a question
Author

Yang Yang

Bio: Yang Yang is an academic researcher from Chinese Academy of Sciences. The author has contributed to research in topics: Medicine & Computer science. The author has an hindex of 171, co-authored 2644 publications receiving 153049 citations. Previous affiliations of Yang Yang include Zhejiang University & Northwest Normal University.


Papers
More filters
Journal ArticleDOI
TL;DR: The long noncoding RNA (lncRNA) E2F1 messenger RNA (mRNA) stabilizing factor (EMS) is reported as a direct c-Myc transcriptional target and implicate EMS as an important player in the regulation of c- myc function.
Abstract: Deregulated expression of c-Myc is an important molecular hallmark of cancer. The oncogenic function of c-Myc has been largely attributed to its intrinsic nature as a master transcription factor. Here, we report the long noncoding RNA (lncRNA) E2F1 messenger RNA (mRNA) stabilizing factor (EMS) as a direct c-Myc transcriptional target. EMS functions as an oncogenic molecule by promoting G1/S cell cycle progression. Mechanistically, EMS cooperates with the RNA binding protein RALY to stabilize E2F1 mRNA, and thereby increases E2F1 expression. Furthermore, EMS is able to connect c-Myc to cell cycle control and tumorigenesis via modulating E2F1 mRNA stability. Together, these findings reveal a previously unappreciated mechanism through which c-Myc induces E2F1 expression and also implicate EMS as an important player in the regulation of c-Myc function.

50 citations

Journal ArticleDOI
TL;DR: The rs11777210 is a potential predictive biomarker of CRC susceptibility, and KBTBD11 functions as a putative tumor suppressor in tumorigenesis, and the study highlighted the high CRC risk of people carrying rs6983267 G and rs11 777210 C alleles.

50 citations

Journal ArticleDOI
TL;DR: This paper proposes an energy-efficient CS-based scheme, which is called “treelet-based clustered compressive data aggregation” (T-CCDA), and adopts treelet transform as a sparsification tool to mine sparsity from signals for CS recovery.
Abstract: Compressive sensing (CS)-based data aggregation has become an increasingly important research topic for large-scale wireless sensor networks since conventional data aggregations are shown to be inefficient and unstable in handling huge data traffic. However, for CS-based techniques, the discrete cosine transform, which is the most widely adopted sparsification basis, cannot sufficiently sparsify real-world signals, which are unordered due to random sensor distribution, thus weakening advantages of CS. In this paper, an energy-efficient CS-based scheme, which is called “treelet-based clustered compressive data aggregation” (T-CCDA), is proposed. Specifically, as a first step, treelet transform is adopted as a sparsification tool to mine sparsity from signals for CS recovery. This approach not only enhances the performance of CS recovery but reveals localized correlation structures among sensor nodes as well. Then, a novel clustered routing algorithm is proposed to further facilitate energy saving by taking advantage of the correlation structures, thus giving our T-CCDA scheme. Simulation results show that the proposed scheme outperforms other reference approaches in terms of communication overhead per reconstruction error for adopted data sets.

50 citations

Journal ArticleDOI
TL;DR: In this paper, semiconducting single-walled carbon nanotubes are added to perovskite films as additives, functioning as both the crystal growth templates and charge bridges between the perovsite grains.
Abstract: Grain size control and boundary passivation of perovskite films are the key to obtaining efficient perovskite solar cells. In order to accomplish both goals, semiconducting single-walled carbon nanotubes are added to perovskite films as additives, functioning as both the crystal growth templates and charge bridges between the perovskite grains. The resulting perovskite films display more uniform and larger crystal grains compared with conventional films owing to the long and flexible single-walled carbon nanotubes, retarding the crystal growth and functioning as the cross-linker between perovskite grains. In addition, sodium deoxycholates attached on the carbon nanotubes passivated the grain boundaries by forming Lewis adducts. Thanks to the improved quality of the photoactive layers by using semiconducting carbon nanotubes, a power conversion efficiency of 19.5% was obtained which is higher than 18.1% of reference devices with no additives.

50 citations

Journal ArticleDOI
TL;DR: The findings established camrelizumab and chemotherapy as a promising neoadjuvant treatment for locally advanced ESCC with robust antitumor activity and demonstrated without unexpected safety signals.
Abstract: Background Camrelizumab and chemotherapy demonstrated durable antitumor activity with a manageable safety profile as first-line treatment in patients with advanced esophageal squamous cell carcinoma (ESCC). This study aimed to evaluate the safety and efficacy of camrelizumab plus neoadjuvant chemotherapy, using pathologically complete response (pCR) as primary endpoint, in the treatment for locally advanced ESCC. Methods Patients with locally advanced but resectable thoracic ESCC, staged as T1b-4a, N2-3 (≥3 stations), and M0 or M1 lymph node metastasis (confined to the supraclavicular lymph nodes) were enrolled. Eligible patients received intravenous camrelizumab (200 mg, day 1) plus nab-paclitaxel (100 mg/m2, day 1, 8, 15) and carboplatin (area under curve of 5 mg/mL/min, day 1) of each 21-days cycle, for two cycles before surgery. The primary endpoint is pCR rate in the per-protocol population. Safety was assessed in the modified intention-to-treat population that was treated with at least one dose of camrelizumab. Results From November 20, 2019 to December 22, 2020, 60 patients were enrolled. 55 (91.7%) patients completed the full two-cycle treatment successfully. 51 patients underwent surgery and R0 resection was achieved in 50 (98.0%) patients. pCR (ypT0N0) was identified in 20 (39.2%) patients and 5 (9.8%) patients had complete response of the primary tumor but residual disease in lymph nodes alone (ypT0N+). 58 patients (96.7%) had any-grade treatment-related adverse events (TRAEs), with the most common being leukocytopenia (86.7%). 34 patients (56.7%) had adverse events of grade 3 or worse, and one patient (1.7%) occurred a grade 5 adverse event. There was no in-hospital and postoperative 30-day as well as 90-day mortality. Conclusions The robust antitumor activity of camrelizumab and chemotherapy was confirmed and demonstrated without unexpected safety signals. Our findings established camrelizumab and chemotherapy as a promising neoadjuvant treatment for locally advanced ESCC. Trial registration number ChiCTR1900026240.

50 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: This work reviews the historical development of Transition metal dichalcogenides, methods for preparing atomically thin layers, their electronic and optical properties, and prospects for future advances in electronics and optoelectronics.
Abstract: Single-layer metal dichalcogenides are two-dimensional semiconductors that present strong potential for electronic and sensing applications complementary to that of graphene.

13,348 citations