scispace - formally typeset
Search or ask a question
Author

Yang Yang

Bio: Yang Yang is an academic researcher from Chinese Academy of Sciences. The author has contributed to research in topics: Medicine & Computer science. The author has an hindex of 171, co-authored 2644 publications receiving 153049 citations. Previous affiliations of Yang Yang include Zhejiang University & Northwest Normal University.


Papers
More filters
Journal ArticleDOI
15 Feb 2020-Geoderma
TL;DR: In this paper, a surface complexation model was applied to evaluate the acid-base buffering properties of the soils by assuming the buffering system to be a protonation-deprotonation process.

32 citations

Journal ArticleDOI
TL;DR: It is verified that the Fabry-Perot resonance occurred in the deep SiNx nanocavity under the Ag nanogap and contributed prominently to a tremendous enhancement of the local field in the Ag-nanogap zone and hence ultrasensitive SERS detection.
Abstract: Considering the technological difficulties in the existing approaches to form nanoscale gaps, a convenient method to fabricate three-dimensional (3D) sub-10 nm Ag/SiNx gap arrays has been demonstrated in this study, controlled by a combination of stress-induced nanocracking of a SiNx nanobridge and Ag nanofilm deposition. This scalable 3D plasmonic nanogap is specially suspended above a substrate, having a tunable nanogap width and large height-to-width ratio to form a nanocavity underneath. As a surface-enhanced Raman scattering (SERS) substrate, the 3D Ag/SiNx nanogap shows a large Raman enhancement factor of ∼108 and extremely high sensitivity for the detection of Rhodamine 6G (R6G) molecules, even down to 10-16 M, indicating an extraordinary capability for single-molecule detection. Further, we verified that the Fabry-Perot resonance occurred in the deep SiNx nanocavity under the Ag nanogap and contributed prominently to a tremendous enhancement of the local field in the Ag-nanogap zone and hence ultrasensitive SERS detection. This method circumvents the technological limitations to fabricate a sub-10 nm metal nanogap with unique features for wide applications in important scientific and technological areas.

32 citations

Journal ArticleDOI
TL;DR: It is shown that transgenic mice with high copy number of DEFA1/DEFA3 [encoding human neutrophil peptides 1–3 (HNP1–3)] suffer from more severe sepsis because of more extensive endothelial barrier dysfunction and endothelial cell pyroptosis after sepsi challenge.
Abstract: Sepsis claims an estimated 30 million episodes and 6 million deaths per year, and treatment options are rather limited. Human neutrophil peptides 1-3 (HNP1-3) are the most abundant neutrophil granule proteins but their neutrophil content varies because of unusually extensive gene copy number polymorphism. A genetic association study found that increased copy number of the HNP-encoding gene DEFA1/DEFA3 is a risk factor for organ dysfunction during sepsis development. However, direct experimental evidence demonstrating that these risk alleles are pathogenic for sepsis is lacking because the genes are present only in some primates and humans. Here, we generate DEFA1/DEFA3 transgenic mice with neutrophil-specific expression of the peptides. We show that mice with high copy number of DEFA1/DEFA3 genes have more severe sepsis-related vital organ damage and mortality than mice with low copy number of DEFA1/DEFA3 or wild-type mice, resulting from more severe endothelial barrier dysfunction and endothelial cell pyroptosis after sepsis challenge. Mechanistically, HNP-1 induces endothelial cell pyroptosis via P2X7 receptor-mediating canonical caspase-1 activation in a NLRP3 inflammasome-dependent manner. Based on these findings, we engineered a monoclonal antibody against HNP-1 to block the interaction with P2X7 and found that the blocking antibody protected mice carrying high copy number of DEFA1/DEFA3 from lethal sepsis. We thus demonstrate that DEFA1/DEFA3 copy number variation strongly modulates sepsis development in vivo and explore a paradigm for the precision treatment of sepsis tailored by individual genetic information.

32 citations

Journal ArticleDOI
TL;DR: In this article, a polyaniline tower-shaped hierarchical nanostructures were prepared by a limited hydrothermal reaction and the evolution of these superstructures was investigated and the relative mechanism was discussed.
Abstract: Polyaniline tower-shaped hierarchical nanostructures were prepared through an unusual route by a limited hydrothermal reaction. The evolution of these superstructures was investigated and the relative mechanism was discussed. This growth process is quite different from that of traditional inorganic layer-like superstructures. The room temperature conductivity of the superstructures was about 10−2 to10−1S cm−1. It may pave a new way for obtaining other conductive polymers with similar superstructures.

31 citations

Journal ArticleDOI
TL;DR: The underlying reason for the outstanding performance is that the PdMnCo alloy/pyridinic nitrogen-doped carbon interfaces weaken the hydrogen-adsorption energy on the catalyst and thus optimize the Gibbs free energy of the intermediate state (ΔGH*), leading to a remarkable electrocatalytic activity.
Abstract: The catalytic performance of Pd-based catalysts has long been hindered by surface contamination, particle agglomeration, and lack of rational structural design. Here we report a simple adsorption method for rapid synthesis (∼90 s) of structure-optimized Pd alloy supported on nitrogen-doped carbon without the use of surfactants or extra reducing agents. The material shows much lower overpotential than 30 wt % Pd/C and 40 wt % Pt/C catalysts while exhibiting excellent durability (80 h). Moreover, unveiled by the density functional theory (DFT) calculation results, the underlying reason for the outstanding performance is that the PdMnCo alloy/pyridinic nitrogen-doped carbon interfaces weaken the hydrogen-adsorption energy on the catalyst and thus optimize the Gibbs free energy of the intermediate state (ΔGH*), leading to a remarkable electrocatalytic activity. This work also opens up an avenue for quick synthesis of a highly efficient structure-optimized Pd-based catalyst.

31 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: This work reviews the historical development of Transition metal dichalcogenides, methods for preparing atomically thin layers, their electronic and optical properties, and prospects for future advances in electronics and optoelectronics.
Abstract: Single-layer metal dichalcogenides are two-dimensional semiconductors that present strong potential for electronic and sensing applications complementary to that of graphene.

13,348 citations