scispace - formally typeset
Search or ask a question
Author

Yang-Yu Liu

Bio: Yang-Yu Liu is an academic researcher from Brigham and Women's Hospital. The author has contributed to research in topics: Microbiome & Complex network. The author has an hindex of 32, co-authored 136 publications receiving 5048 citations. Previous affiliations of Yang-Yu Liu include Harvard University & Northeastern University.


Papers
More filters
Journal ArticleDOI
TL;DR: Recent advances on the controllability and the control of complex networks are reviewed, exploring the intricate interplay between a system's structure, captured by its network topology, and the dynamical laws that govern the interactions between the components.
Abstract: A reflection of our ultimate understanding of a complex system is our ability to control its behavior. Typically, control has multiple prerequisites: It requires an accurate map of the network that governs the interactions between the system's components, a quantitative description of the dynamical laws that govern the temporal behavior of each component, and an ability to influence the state and temporal behavior of a selected subset of the components. With deep roots in nonlinear dynamics and control theory, notions of control and controllability have taken a new life recently in the study of complex networks, inspiring several fundamental questions: What are the control principles of complex systems? How do networks organize themselves to balance control with functionality? To address these here we review recent advances on the controllability and the control of complex networks, exploring the intricate interplay between a system's structure, captured by its network topology, and the dynamical laws that govern the interactions between the components. We match the pertinent mathematical results with empirical findings and applications. We show that uncovering the control principles of complex systems can help us explore and ultimately understand the fundamental laws that govern their behavior.

503 citations

Journal ArticleDOI
TL;DR: A graphical approach derived from the dynamical laws that govern a system is adopted to determine the sensors that are necessary and sufficient to reconstruct the full internal state of a complex system, finding that the identified sensors are not only necessary but also sufficient for observability.
Abstract: A quantitative description of a complex system is inherently limited by our ability to estimate the system’s internal state from experimentally accessible outputs. Although the simultaneous measurement of all internal variables, like all metabolite concentrations in a cell, offers a complete description of a system’s state, in practice experimental access is limited to only a subset of variables, or sensors. A system is called observable if we can reconstruct the system’s complete internal state from its outputs. Here, we adopt a graphical approach derived from the dynamical laws that govern a system to determine the sensors that are necessary to reconstruct the full internal state of a complex system. We apply this approach to biochemical reaction systems, finding that the identified sensors are not only necessary but also sufficient for observability. The developed approach can also identify the optimal sensors for target or partial observability, helping us reconstruct selected state variables from appropriately chosen outputs, a prerequisite for optimal biomarker design. Given the fundamental role observability plays in complex systems, these results offer avenues to systematically explore the dynamics of a wide range of natural, technological and socioeconomic systems.

484 citations

Journal ArticleDOI
23 Apr 2015-Cell
TL;DR: This work functionally profile several thousand missense mutations across a spectrum of Mendelian disorders using various interaction assays, suggesting that disease-associated alleles that perturb distinct protein activities rather than grossly affecting folding and stability are relatively widespread.

453 citations

Journal ArticleDOI
TL;DR: Gao et al. as mentioned in this paper developed a theoretical approach and a greedy algorithm to study target control, the ability to efficiently control a preselected subset of nodes in complex networks, which has numerous applications in natural and technological systems.
Abstract: Network controllability has numerous applications in natural and technological systems. Here, Gao et al. develop a theoretical approach and a greedy algorithm to study target control—the ability to efficiently control a preselected subset of nodes—in complex networks.

331 citations

Journal ArticleDOI
24 Nov 2017-Science
TL;DR: It is demonstrated that temporal networks can be controlled more efficiently and require less energy than their static counterparts, and have control trajectories that are considerably more compact than those characterizing static networks.
Abstract: Most networked systems of scientific interest are characterized by temporal links, meaning the network’s structure changes over time. Link temporality has been shown to hinder many dynamical processes, from information spreading to accessibility, by disrupting network paths. Considering the ubiquity of temporal networks in nature, we ask: Are there any advantages of the networks’ temporality? We use an analytical framework to show that temporal networks can, compared to their static counterparts, reach controllability faster, demand orders of magnitude less control energy, and have control trajectories, that are considerably more compact than those characterizing static networks. Thus, temporality ensures a degree of flexibility that would be unattainable in static networks, enhancing our ability to control them.

303 citations


Cited by
More filters
Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations

Proceedings ArticleDOI
22 Jan 2006
TL;DR: Some of the major results in random graphs and some of the more challenging open problems are reviewed, including those related to the WWW.
Abstract: We will review some of the major results in random graphs and some of the more challenging open problems. We will cover algorithmic and structural questions. We will touch on newer models, including those related to the WWW.

7,116 citations

Journal ArticleDOI
TL;DR: The Helioseismic and Magnetic Imager (HMI) as discussed by the authors was designed to measure the Doppler shift, intensity, and vector magnetic field at the solar photosphere using the 6173 A FeI absorption line.
Abstract: The Helioseismic and Magnetic Imager (HMI) investigation (Solar Phys. doi: 10.1007/s11207-011-9834-2, 2011) will study the solar interior using helioseismic techniques as well as the magnetic field near the solar surface. The HMI instrument is part of the Solar Dynamics Observatory (SDO) that was launched on 11 February 2010. The instrument is designed to measure the Doppler shift, intensity, and vector magnetic field at the solar photosphere using the 6173 A Fe i absorption line. The instrument consists of a front-window filter, a telescope, a set of waveplates for polarimetry, an image-stabilization system, a blocking filter, a five-stage Lyot filter with one tunable element, two wide-field tunable Michelson interferometers, a pair of 40962 pixel cameras with independent shutters, and associated electronics. Each camera takes a full-disk image roughly every 3.75 seconds giving an overall cadence of 45 seconds for the Doppler, intensity, and line-of-sight magnetic-field measurements and a slower cadence for the full vector magnetic field. This article describes the design of the HMI instrument and provides an overview of the pre-launch calibration efforts. Overviews of the investigation, details of the calibrations, data handling, and the science analysis are provided in accompanying articles.

1,997 citations

Journal ArticleDOI
TL;DR: It is shown that the full set of hydromagnetic equations admit five more integrals, besides the energy integral, if dissipative processes are absent, which made it possible to formulate a variational principle for the force-free magnetic fields.
Abstract: where A represents the magnetic vector potential, is an integral of the hydromagnetic equations. This -integral made it possible to formulate a variational principle for the force-free magnetic fields. The integral expresses the fact that motions cannot transform a given field in an entirely arbitrary different field, if the conductivity of the medium isconsidered infinite. In this paper we shall show that the full set of hydromagnetic equations admit five more integrals, besides the energy integral, if dissipative processes are absent. These integrals, as we shall presently verify, are I2 =fbHvdV, (2)

1,858 citations