scispace - formally typeset
Search or ask a question
Author

Yangbing Zhao

Bio: Yangbing Zhao is an academic researcher from University of Pennsylvania. The author has contributed to research in topics: Chimeric antigen receptor & T cell. The author has an hindex of 46, co-authored 95 publications receiving 9547 citations. Previous affiliations of Yangbing Zhao include Weizmann Institute of Science & Duke University.


Papers
More filters
Journal ArticleDOI
28 Feb 2020-Science
TL;DR: This first-in-human, phase 1 clinical trial was designed to test the safety and feasibility of multiplex CRISPR-Cas9 gene editing of T cells from patients with advanced, refractory cancer and found the persistence of the T cells expressing the engineered TCR was much more durable than in three previous clinical trials during which T cells were infused.
Abstract: CRISPR-Cas9 gene editing provides a powerful tool to enhance the natural ability of human T cells to fight cancer. We report a first-in-human phase 1 clinical trial to test the safety and feasibility of multiplex CRISPR-Cas9 editing to engineer T cells in three patients with refractory cancer. Two genes encoding the endogenous T cell receptor (TCR) chains, TCRα (TRAC) and TCRβ (TRBC), were deleted in T cells to reduce TCR mispairing and to enhance the expression of a synthetic, cancer-specific TCR transgene (NY-ESO-1). Removal of a third gene encoding programmed cell death protein 1 (PD-1; PDCD1), was performed to improve antitumor immunity. Adoptive transfer of engineered T cells into patients resulted in durable engraftment with edits at all three genomic loci. Although chromosomal translocations were detected, the frequency decreased over time. Modified T cells persisted for up to 9 months, suggesting that immunogenicity is minimal under these conditions and demonstrating the feasibility of CRISPR gene editing for cancer immunotherapy.

779 citations

Journal ArticleDOI
TL;DR: Findings support the development of mRNA CAR-based strategies for carcinoma and other solid tumors by showing the potential of using mRNA-engineered T cells to evaluate, in a controlled manner, potential off-tumor on-target toxicities and showing that short-lived CAR T cells can induce epitope spreading and mediate antitumor activity in patients with advanced cancer.
Abstract: Off-target toxicity due to the expression of target antigens in normal tissue represents a major obstacle to the use of chimeric antigen receptor (CAR)-engineered T cells for treatment of solid malignancies. To circumvent this issue, we established a clinical platform for engineering T cells with transient CAR expression by using in vitro transcribed mRNA encoding a CAR that includes both the CD3-ζ and 4-1BB costimulatory domains. We present two case reports from ongoing trials indicating that adoptive transfer of mRNA CAR T cells that target mesothelin (CARTmeso cells) is feasible and safe without overt evidence of off-tumor on-target toxicity against normal tissues. CARTmeso cells persisted transiently within the peripheral blood after intravenous administration and migrated to primary and metastatic tumor sites. Clinical and laboratory evidence of antitumor activity was shown in both patients, and the CARTmeso cells elicited an antitumor immune response revealed by the development of novel antiself antibodies. These data show the potential of using mRNA-engineered T cells to evaluate, in a controlled manner, potential off-tumor on-target toxicities and show that short-lived CAR T cells can induce epitope spreading and mediate antitumor activity in patients with advanced cancer. Thus, these findings support the development of mRNA CAR-based strategies for carcinoma and other solid tumors. Cancer Immunol Res; 2(2); 112–20. ©2013 AACR .

705 citations

Journal ArticleDOI
TL;DR: Gene-disrupted allogeneic CAR and TCR T cells could provide an alternative as a universal donor to autologous T cells, which carry difficulties and high production costs.
Abstract: Purpose: Using gene-disrupted allogeneic T cells as universal effector cells provides an alternative and potentially improves current chimeric antigen receptor (CAR) T-cell therapy against cancers and infectious diseases.Experimental Design: The CRISPR/Cas9 system has recently emerged as a simple and efficient way for multiplex genome engineering. By combining lentiviral delivery of CAR and electro-transfer of Cas9 mRNA and gRNAs targeting endogenous TCR, β-2 microglobulin (B2M) and PD1 simultaneously, to generate gene-disrupted allogeneic CAR T cells deficient of TCR, HLA class I molecule and PD1.Results: The CRISPR gene-edited CAR T cells showed potent antitumor activities, both in vitro and in animal models and were as potent as non-gene-edited CAR T cells. In addition, the TCR and HLA class I double deficient T cells had reduced alloreactivity and did not cause graft-versus-host disease. Finally, simultaneous triple genome editing by adding the disruption of PD1 led to enhanced in vivo antitumor activity of the gene-disrupted CAR T cells.Conclusions: Gene-disrupted allogeneic CAR and TCR T cells could provide an alternative as a universal donor to autologous T cells, which carry difficulties and high production costs. Gene-disrupted CAR and TCR T cells with disabled checkpoint molecules may be potent effector cells against cancers and infectious diseases. Clin Cancer Res; 23(9); 2255-66. ©2016 AACR.

666 citations

Journal ArticleDOI
30 May 2018-Nature
TL;DR: Genetically engineered T cells that induced remission in a patient with chronic lymphocytic leukaemia were found to have disruption of the TET2 gene, which caused T cell changes that potentiated their anti-tumour effects.
Abstract: Cancer immunotherapy based on genetically redirecting T cells has been used successfully to treat B cell malignancies1-3. In this strategy, the T cell genome is modified by integration of viral vectors or transposons encoding chimaeric antigen receptors (CARs) that direct tumour cell killing. However, this approach is often limited by the extent of expansion and persistence of CAR T cells4,5. Here we report mechanistic insights from studies of a patient with chronic lymphocytic leukaemia treated with CAR T cells targeting the CD19 protein. Following infusion of CAR T cells, anti-tumour activity was evident in the peripheral blood, lymph nodes and bone marrow; this activity was accompanied by complete remission. Unexpectedly, at the peak of the response, 94% of CAR T cells originated from a single clone in which lentiviral vector-mediated insertion of the CAR transgene disrupted the methylcytosine dioxygenase TET2 gene. Further analysis revealed a hypomorphic mutation in this patient's second TET2 allele. TET2-disrupted CAR T cells exhibited an epigenetic profile consistent with altered T cell differentiation and, at the peak of expansion, displayed a central memory phenotype. Experimental knockdown of TET2 recapitulated the potency-enhancing effect of TET2 dysfunction in this patient's CAR T cells. These findings suggest that the progeny of a single CAR T cell induced leukaemia remission and that TET2 modification may be useful for improving immunotherapies.

508 citations

Journal ArticleDOI
TL;DR: This is the first description of clinical anaphylaxis resulting from CAR-modified T cells, most likely through IgE antibodies specific to the CAR, and indicates that the potential immunogenicity of CARs derived from murine antibodies may be a safety issue for mRNA CARs, especially when administered using an intermittent dosing schedule.
Abstract: T cells can be redirected to overcome tolerance to cancer by engineering with integrating vectors to express a chimeric antigen receptor (CAR). In preclinical models, we have previously shown that transfection of T cells with mRNA coding for a CAR is an alternative strategy that has antitumor efficacy and the potential to evaluate theon-targetoff-tumortoxicityofnewCARtargetssafelyduetotransientmRNACARexpression.Here,wereport the safety observed in four patients treated with autologous T cells that had been electroporated with mRNA coding for a CAR derived from a murine antibody to human mesothelin. Because of the transient nature of CAR expression on the T cells, subjects in the clinical study were given repeated infusions of the CAR-T cells to assess their safety. One subject developed anaphylaxis and cardiac arrest within minutes of completing the third infusion. Although human anti-mouse immunoglobulin (Ig)G antibodies have been known to develop with CARtransduced T cells, they have been thought to have no adverse clinical consequences. This is the first description of clinical anaphylaxis resulting from CAR-modified T cells, most likely through IgE antibodies specifi ct o the CAR. These results indicate that the potential immunogenicity of CARs derived from murine antibodies may be a safety issue for mRNA CARs, especially when administered using an intermittent dosing schedule. Cancer Immunol Res; 1(1); 26–31. � 2013 AACR.

488 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Patients with refractory large B‐cell lymphoma who received CAR T‐cell therapy with axi‐cel had high levels of durable response, with a safety profile that included myelosuppression, the cytokine release syndrome, and neurologic events.
Abstract: BackgroundIn a phase 1 trial, axicabtagene ciloleucel (axi-cel), an autologous anti-CD19 chimeric antigen receptor (CAR) T-cell therapy, showed efficacy in patients with refractory large B-cell lymphoma after the failure of conventional therapy. MethodsIn this multicenter, phase 2 trial, we enrolled 111 patients with diffuse large B-cell lymphoma, primary mediastinal B-cell lymphoma, or transformed follicular lymphoma who had refractory disease despite undergoing recommended prior therapy. Patients received a target dose of 2×106 anti-CD19 CAR T cells per kilogram of body weight after receiving a conditioning regimen of low-dose cyclophosphamide and fludarabine. The primary end point was the rate of objective response (calculated as the combined rates of complete response and partial response). Secondary end points included overall survival, safety, and biomarker assessments. ResultsAmong the 111 patients who were enrolled, axi-cel was successfully manufactured for 110 (99%) and administered to 101 (91%)....

3,363 citations

Journal ArticleDOI
22 Dec 2011-Nature
TL;DR: In the context of advances in the understanding of how tolerance, immunity and immunosuppression regulate antitumour immune responses, these successes suggest that active immunotherapy represents a path to obtain a durable and long-lasting response in cancer patients.
Abstract: Activating the immune system for therapeutic benefit in cancer has long been a goal in immunology and oncology. After decades of disappointment, the tide has finally changed due to the success of recent proof-of-concept clinical trials. Most notable has been the ability of the anti-CTLA4 antibody, ipilimumab, to achieve a significant increase in survival for patients with metastatic melanoma, for which conventional therapies have failed. In the context of advances in the understanding of how tolerance, immunity and immunosuppression regulate antitumour immune responses together with the advent of targeted therapies, these successes suggest that active immunotherapy represents a path to obtain a durable and long-lasting response in cancer patients.

3,132 citations

Journal ArticleDOI
09 Feb 2017-Cell
TL;DR: As the molecular mechanisms of resistance to immunotherapy are elucidated, actionable strategies to prevent or treat them may be derived to improve clinical outcomes for patients.

3,131 citations

Journal ArticleDOI
15 May 2002-Blood
TL;DR: The data demonstrate that autologous or allogeneic BMSCs strongly suppress T-lymphocyte proliferation, this phenomenon that is triggered by both cellular as well as nonspecific mitogenic stimuli has no immunologic restriction, and T-cell inhibition is not due to induction of apoptosis and is likely due to the production of soluble factors.

3,127 citations

Journal ArticleDOI
06 Oct 2006-Science
TL;DR: The ability to specifically confer tumor recognition by autologous lymphocytes from peripheral blood by using a retrovirus that encodes a T cell receptor is reported.
Abstract: Through the adoptive transfer of lymphocytes after host immunodepletion, it is possible to mediate objective cancer regression in human patients with metastatic melanoma. However, the generation of tumor-specific T cells in this mode of immunotherapy is often limiting. Here we report the ability to specifically confer tumor recognition by autologous lymphocytes from peripheral blood by using a retrovirus that encodes a T cell receptor. Adoptive transfer of these transduced cells in 15 patients resulted in durable engraftment at levels exceeding 10% of peripheral blood lymphocytes for at least 2 months after the infusion. We observed high sustained levels of circulating, engineered cells at 1 year after infusion in two patients who both demonstrated objective regression of metastatic melanoma lesions. This study suggests the therapeutic potential of genetically engineered cells for the biologic therapy of cancer.

2,614 citations