scispace - formally typeset
Search or ask a question
Author

Yaniv Taigman

Other affiliations: Tel Aviv University
Bio: Yaniv Taigman is an academic researcher from Facebook. The author has contributed to research in topics: Computer science & Facial recognition system. The author has an hindex of 23, co-authored 44 publications receiving 8881 citations. Previous affiliations of Yaniv Taigman include Tel Aviv University.


Papers
More filters
Proceedings ArticleDOI
23 Jun 2014
TL;DR: This work revisits both the alignment step and the representation step by employing explicit 3D face modeling in order to apply a piecewise affine transformation, and derive a face representation from a nine-layer deep neural network.
Abstract: In modern face recognition, the conventional pipeline consists of four stages: detect => align => represent => classify. We revisit both the alignment step and the representation step by employing explicit 3D face modeling in order to apply a piecewise affine transformation, and derive a face representation from a nine-layer deep neural network. This deep network involves more than 120 million parameters using several locally connected layers without weight sharing, rather than the standard convolutional layers. Thus we trained it on the largest facial dataset to-date, an identity labeled dataset of four million facial images belonging to more than 4, 000 identities. The learned representations coupling the accurate model-based alignment with the large facial database generalize remarkably well to faces in unconstrained environments, even with a simple classifier. Our method reaches an accuracy of 97.35% on the Labeled Faces in the Wild (LFW) dataset, reducing the error of the current state of the art by more than 27%, closely approaching human-level performance.

6,132 citations

01 Oct 2008
TL;DR: This paper explores how well this performance carries over to the related task of multi-option face identification, specifically on the Labeled Faces in the Wild (LFW) image set, and seeks to compare the performance of similarity learning methods to descriptor based methods.
Abstract: Recent methods for learning similarity between images have presented impressive results in the problem of pair matching (same/notsame classification) of face images. In this paper we explore how well this performance carries over to the related task of multi-option face identification, specifically on the Labeled Faces in the Wild (LFW) image set. In addition, we seek to compare the performance of similarity learning methods to descriptor based methods. We present the following results: (1) Descriptor-Based approaches that efficiently encode the appearance of each face image as a vector outperform the leading similarity based method in the task of multi-option face identification. (2) Straightforward use of Euclidean distance on the descriptor vectors performs somewhat worse than the similarity learning methods on the task of pair matching. (3) Adding a learning stage, the performance of descriptor based methods matches and exceeds that of similarity methods on the pair matching task. (4) A novel patch based descriptor we propose is able to improve the performance of the successful Local Binary Pattern (LBP) descriptor in both multi-option identification and same/not-same classification.

504 citations

Posted Content
TL;DR: Domain Transfer Network (DTN) as discussed by the authors employs a compound loss function that includes a multiclass GAN loss, an f-constancy component, and a regularizing component that encourages G to map samples from T to themselves.
Abstract: We study the problem of transferring a sample in one domain to an analog sample in another domain. Given two related domains, S and T, we would like to learn a generative function G that maps an input sample from S to the domain T, such that the output of a given function f, which accepts inputs in either domains, would remain unchanged. Other than the function f, the training data is unsupervised and consist of a set of samples from each domain. The Domain Transfer Network (DTN) we present employs a compound loss function that includes a multiclass GAN loss, an f-constancy component, and a regularizing component that encourages G to map samples from T to themselves. We apply our method to visual domains including digits and face images and demonstrate its ability to generate convincing novel images of previously unseen entities, while preserving their identity.

460 citations

Journal ArticleDOI
TL;DR: A face-image, pair-matching approach primarily developed and tested on the “Labeled Faces in the Wild” benchmark that reflects the challenges of face recognition from unconstrained images, and describes a number of novel, effective similarity measures.
Abstract: Computer vision systems have demonstrated considerable improvement in recognizing and verifying faces in digital images. Still, recognizing faces appearing in unconstrained, natural conditions remains a challenging task. In this paper, we present a face-image, pair-matching approach primarily developed and tested on the “Labeled Faces in the Wild” (LFW) benchmark that reflects the challenges of face recognition from unconstrained images. The approach we propose makes the following contributions. 1) We present a family of novel face-image descriptors designed to capture statistics of local patch similarities. 2) We demonstrate how unlabeled background samples may be used to better evaluate image similarities. To this end, we describe a number of novel, effective similarity measures. 3) We show how labeled background samples, when available, may further improve classification performance, by employing a unique pair-matching pipeline. We present state-of-the-art results on the LFW pair-matching benchmarks. In addition, we show our system to be well suited for multilabel face classification (recognition) problem, on both the LFW images and on images from the laboratory controlled multi-PIE database.

351 citations

Book ChapterDOI
23 Sep 2009
TL;DR: “background samples”, that is, examples which do not belong to any of the classes being learned, may provide a significant performance boost to such face recognition systems, and is defined and evaluated as an extension to the recently proposed “One-Shot Similarity” (OSS) measure.
Abstract: Evaluating the similarity of images and their descriptors by employing discriminative learners has proven itself to be an effective face recognition paradigm. In this paper we show how “background samples”, that is, examples which do not belong to any of the classes being learned, may provide a significant performance boost to such face recognition systems. In particular, we make the following contributions. First, we define and evaluate the “Two-Shot Similarity” (TSS) score as an extension to the recently proposed “One-Shot Similarity” (OSS) measure. Both these measures utilize background samples to facilitate better recognition rates. Second, we examine the ranking of images most similar to a query image and employ these as a descriptor for that image. Finally, we provide results underscoring the importance of proper face alignment in automatic face recognition systems. These contributions in concert allow us to obtain a success rate of 86.83% on the Labeled Faces in the Wild (LFW) benchmark, outperforming current state-of-the-art results.

314 citations


Cited by
More filters
Book
18 Nov 2016
TL;DR: Deep learning as mentioned in this paper is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts, and it is used in many applications such as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames.
Abstract: Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.

38,208 citations

Proceedings Article
21 Jun 2010
TL;DR: Restricted Boltzmann machines were developed using binary stochastic hidden units that learn features that are better for object recognition on the NORB dataset and face verification on the Labeled Faces in the Wild dataset.
Abstract: Restricted Boltzmann machines were developed using binary stochastic hidden units. These can be generalized by replacing each binary unit by an infinite number of copies that all have the same weights but have progressively more negative biases. The learning and inference rules for these "Stepped Sigmoid Units" are unchanged. They can be approximated efficiently by noisy, rectified linear units. Compared with binary units, these units learn features that are better for object recognition on the NORB dataset and face verification on the Labeled Faces in the Wild dataset. Unlike binary units, rectified linear units preserve information about relative intensities as information travels through multiple layers of feature detectors.

14,799 citations

Posted Content
TL;DR: This paper presents a general end-to-end approach to sequence learning that makes minimal assumptions on the sequence structure, and finds that reversing the order of the words in all source sentences improved the LSTM's performance markedly, because doing so introduced many short term dependencies between the source and the target sentence which made the optimization problem easier.
Abstract: Deep Neural Networks (DNNs) are powerful models that have achieved excellent performance on difficult learning tasks. Although DNNs work well whenever large labeled training sets are available, they cannot be used to map sequences to sequences. In this paper, we present a general end-to-end approach to sequence learning that makes minimal assumptions on the sequence structure. Our method uses a multilayered Long Short-Term Memory (LSTM) to map the input sequence to a vector of a fixed dimensionality, and then another deep LSTM to decode the target sequence from the vector. Our main result is that on an English to French translation task from the WMT'14 dataset, the translations produced by the LSTM achieve a BLEU score of 34.8 on the entire test set, where the LSTM's BLEU score was penalized on out-of-vocabulary words. Additionally, the LSTM did not have difficulty on long sentences. For comparison, a phrase-based SMT system achieves a BLEU score of 33.3 on the same dataset. When we used the LSTM to rerank the 1000 hypotheses produced by the aforementioned SMT system, its BLEU score increases to 36.5, which is close to the previous best result on this task. The LSTM also learned sensible phrase and sentence representations that are sensitive to word order and are relatively invariant to the active and the passive voice. Finally, we found that reversing the order of the words in all source sentences (but not target sentences) improved the LSTM's performance markedly, because doing so introduced many short term dependencies between the source and the target sentence which made the optimization problem easier.

11,936 citations

Posted Content
TL;DR: This work proposes a Parametric Rectified Linear Unit (PReLU) that generalizes the traditional rectified unit and derives a robust initialization method that particularly considers the rectifier nonlinearities.
Abstract: Rectified activation units (rectifiers) are essential for state-of-the-art neural networks. In this work, we study rectifier neural networks for image classification from two aspects. First, we propose a Parametric Rectified Linear Unit (PReLU) that generalizes the traditional rectified unit. PReLU improves model fitting with nearly zero extra computational cost and little overfitting risk. Second, we derive a robust initialization method that particularly considers the rectifier nonlinearities. This method enables us to train extremely deep rectified models directly from scratch and to investigate deeper or wider network architectures. Based on our PReLU networks (PReLU-nets), we achieve 4.94% top-5 test error on the ImageNet 2012 classification dataset. This is a 26% relative improvement over the ILSVRC 2014 winner (GoogLeNet, 6.66%). To our knowledge, our result is the first to surpass human-level performance (5.1%, Russakovsky et al.) on this visual recognition challenge.

11,866 citations

Proceedings ArticleDOI
07 Dec 2015
TL;DR: In this paper, a Parametric Rectified Linear Unit (PReLU) was proposed to improve model fitting with nearly zero extra computational cost and little overfitting risk, which achieved a 4.94% top-5 test error on ImageNet 2012 classification dataset.
Abstract: Rectified activation units (rectifiers) are essential for state-of-the-art neural networks. In this work, we study rectifier neural networks for image classification from two aspects. First, we propose a Parametric Rectified Linear Unit (PReLU) that generalizes the traditional rectified unit. PReLU improves model fitting with nearly zero extra computational cost and little overfitting risk. Second, we derive a robust initialization method that particularly considers the rectifier nonlinearities. This method enables us to train extremely deep rectified models directly from scratch and to investigate deeper or wider network architectures. Based on the learnable activation and advanced initialization, we achieve 4.94% top-5 test error on the ImageNet 2012 classification dataset. This is a 26% relative improvement over the ILSVRC 2014 winner (GoogLeNet, 6.66% [33]). To our knowledge, our result is the first to surpass the reported human-level performance (5.1%, [26]) on this dataset.

11,732 citations