scispace - formally typeset
Search or ask a question
Author

Yanju Liu

Other affiliations: University of Bristol
Bio: Yanju Liu is an academic researcher from Harbin Institute of Technology. The author has contributed to research in topics: Shape-memory polymer & Materials science. The author has an hindex of 51, co-authored 358 publications receiving 11110 citations. Previous affiliations of Yanju Liu include University of Bristol.


Papers
More filters
Journal ArticleDOI
TL;DR: Shape-memory polymers (SMPs) undergo significant macroscopic deformation upon the application of an external stimulus (e.g., heat, electricity, light, magnetism, moisture and even a change in pH value).

1,217 citations

Journal ArticleDOI
TL;DR: In this paper, shape memory polymers and their composites (SMPs and SMPCs) can respond to specific external stimulus and remember the original shape, and the stimulus methods are discussed to demonstrate the shape recovery effect.
Abstract: As a new class of smart materials, shape memory polymers and their composites (SMPs and SMPCs) can respond to specific external stimulus and remember the original shape. There are many types of stimulus methods to actuate the deformation of SMPs and SMPCs, of which the thermal- and electro-responsive components and structures are common. In this review, the general mechanism of SMPs and SMPCs are first introduced, the stimulus methods are then discussed to demonstrate the shape recovery effect, and finally, the applications of SMPs and SMPCs that are reinforced with fiber materials in aerospace are reviewed. SMPC hinges and booms are discussed in the part on components; the booms can be divided again into foldable SMPC truss booms, coilable SMPC truss booms and storable tubular extendible member (STEM) booms. In terms of SMPC structures, the solar array and deployable panel, reflector antenna and morphing wing are introduced in detail. Considering the factors of weight, recovery force and shock effect, SMPCs are expected to have great potential applications in aerospace.

810 citations

Journal ArticleDOI
Yanju Liu1, Haibao Lv1, Xin Lan1, Jinsong Leng1, Shanyi Du1 
TL;DR: In this article, the progress of electro-activate SMP composites is discussed and the filler types that affect the conductive properties of these composites are discussed, and the mechanisms of electric conduction are addressed.

440 citations

Journal ArticleDOI
Xia Yuliang1, Yang He1, Fenghua Zhang1, Yanju Liu1, Jinsong Leng1 
TL;DR: A comprehensive analysis of the shape recovery mechanisms, multifunctionality, applications, and recent advances in SMPs and SMPCs is presented.
Abstract: Over the past decades, interest in shape memory polymers (SMPs) has persisted, and immense efforts have been dedicated to developing SMPs and their multifunctional composites. As a class of stimuli-responsive polymers, SMPs can return to their initial shape from a programmed temporary shape under external stimuli, such as light, heat, magnetism, and electricity. The introduction of functional materials and nanostructures results in shape memory polymer composites (SMPCs) with large recoverable deformation, enhanced mechanical properties, and controllable remote actuation. Because of these unique features, SMPCs have a broad application prospect in many fields covering aerospace engineering, biomedical devices, flexible electronics, soft robotics, shape memory arrays, and 4D printing. Herein, a comprehensive analysis of the shape recovery mechanisms, multifunctionality, applications, and recent advances in SMPs and SMPCs is presented. Specifically, the combination of functional, reversible, multiple, and controllable shape recovery processes is discussed. Further, established products from such materials are highlighted. Finally, potential directions for the future advancement of SMPs are proposed.

438 citations

Journal ArticleDOI
TL;DR: In this article, the shape recovery behavior of thermoset styrene-based shape-memory polymer composite (SMPC) reinforced by carbon fiber fabrics is investigated, and the feasibility of using an SMPC hinge as a deployable structure is demonstrated.
Abstract: This paper investigates the shape recovery behavior of thermoset styrene-based shape-memory polymer composite (SMPC) reinforced by carbon fiber fabrics, and demonstrates the feasibility of using an SMPC hinge as a deployable structure. The major advantages of shape-memory polymers (SMPs) are their extremely high recovery strain, low density and low cost. However, relatively low modulus and low strength are their intrinsic drawbacks. A fiber reinforced SMPC which may overcome the above-mentioned disadvantages is studied here. The investigation was conducted by three types of test, namely dynamic mechanical analysis (DMA), a shape recovery test, and optical microscopic observations of the deformation mechanism for an SMPC specimen. Results reveal that the SMPC exhibits a higher storage modulus than that of a pure SMP. At/above Tg, the shape recovery ratio of the SMPC upon bending is above 90%. The shape recovery properties of the SMPC become relatively stable after some packaging/deployment cycles. Additionally, fiber microbuckling is the primary mechanism for obtaining a large strain in the bending of the SMPC. Moreover, an SMPC hinge has been fabricated, and a prototype of a solar array actuated by the SMPC hinge has been successfully deployed.

437 citations


Cited by
More filters
01 Jun 2005

3,154 citations

Journal ArticleDOI
TL;DR: Shape memory alloys (SMAs) are a class of shape memory materials (SMMs) which have the ability to "memorise" or retain their previous form when subjected to certain stimulus such as thermomechanical or magnetic variations.

2,818 citations

Journal ArticleDOI
TL;DR: This work aims to provide a comprehensive overview of electrospun nanofibers, including the principle, methods, materials, and applications, and highlights the most relevant and recent advances related to the applications by focusing on the most representative examples.
Abstract: Electrospinning is a versatile and viable technique for generating ultrathin fibers. Remarkable progress has been made with regard to the development of electrospinning methods and engineering of electrospun nanofibers to suit or enable various applications. We aim to provide a comprehensive overview of electrospinning, including the principle, methods, materials, and applications. We begin with a brief introduction to the early history of electrospinning, followed by discussion of its principle and typical apparatus. We then discuss its renaissance over the past two decades as a powerful technology for the production of nanofibers with diversified compositions, structures, and properties. Afterward, we discuss the applications of electrospun nanofibers, including their use as "smart" mats, filtration membranes, catalytic supports, energy harvesting/conversion/storage components, and photonic and electronic devices, as well as biomedical scaffolds. We highlight the most relevant and recent advances related to the applications of electrospun nanofibers by focusing on the most representative examples. We also offer perspectives on the challenges, opportunities, and new directions for future development. At the end, we discuss approaches to the scale-up production of electrospun nanofibers and briefly discuss various types of commercial products based on electrospun nanofibers that have found widespread use in our everyday life.

2,289 citations