scispace - formally typeset
Search or ask a question
Author

Yanqi Sang

Bio: Yanqi Sang is an academic researcher from China Medical University (PRC). The author has contributed to research in topics: Messenger RNA & Histone methylation. The author has an hindex of 2, co-authored 3 publications receiving 48 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The research progress and related mechanisms of the role of mRNA m6A methylation in the nervous system from the aspects of neural stem cells, learning and memory, brain development, axon growth and glioblastoma are reviewed.
Abstract: Epitranscriptomics, also known as “RNA epigenetics”, is a chemical modification for RNA regulation. Ribonucleic acid (RNA) methylation is considered to be a major discovery following the deoxyribonucleic acid (DNA) and histone methylation. Messenger RNA (mRNA) methylation modification accounts for more than 60% of all RNA modifications and N6-methyladenosine (m6A) is known as one of the most common type of eukaryotic mRNA methylation modifications in current. The m6A modification is a dynamic reversible modification, which can directly or indirectly affect biological processes, such as RNA degradation, translation and splicing, and can play important biological roles in vivo. This article introduces the mRNA m6A methylation modification enzymes and binding proteins, and reviews the research progress and related mechanisms of the role of mRNA m6A methylation in the nervous system from the aspects of neural stem cells, learning and memory, brain development, axon growth and glioblastoma.

69 citations

Journal ArticleDOI
TL;DR: Examination of the mechanism of Mn disruption of GnRH synthesis via nuclear factor erythroid-2-related factor-2 (Nrf2/mGluR5/COX-2/PGE2 signaling pathway in vitro and in vivo concluded that excessive exposure to Mn disrupts GnRH secretion through Nrf2, mGlu R5, Nrf 2, and NRF2 target genes.
Abstract: There are limited studies focused on the precise mechanism of gonadotropin-releasing hormone (GnRH) secretion dysfunction after overexposure to manganese (Mn). The objective of the present study was to explore the mechanism of Mn disruption of GnRH synthesis via nuclear factor erythroid-2-related factor-2 (Nrf2)/metabotropic glutamate receptor-5 (mGluR5)/cyclooxygenase-2 (COX-2)/prostaglandin E2 (PGE2) signaling pathway in vitro and in vivo. Primary astrocytes were cultured and treated with different doses of Mn, tert-butylhydroquinonet (tBHQ; Nrf2 agonists), 3-[(2-methyl-4-thaizolyl) ethynyl] pyridine (MTEP; mGluR5 inhibitor), and celecoxib (COX-2 inhibitor) to measure the levels of COX-2, mGluR5, Nrf2, and Nrf2 target genes. Mice were randomly divided into 11 groups, of which included the control group, 12.5-, 25-, and 50-mg/kg MnCl2 group, dimethyl sulfoxide (DMSO) group, tBHQ control group, tBHQ pretreatment group, MTEP control group, MTEP pretreatment group, celecoxib control group, and celecoxib pretreatment group. The injection was administered every day for 2 weeks. Then, levels of GnRH, PGE2, COX-2, mGluR5, Nrf2, Nrf2 target genes, and morphological changes in the hypothalamus of mice were measured. Mn reduced protein levels of Nrf2 and mRNA expression of Nrf2 target genes and increased mGluR5, COX-2, PGE2, and GnRH levels. Meanwhile, injury-related histomorphology changes in the hypothalamus of mice were significantly present. In conclusion, excessive exposure to Mn disrupts GnRH secretion through Nrf2/mGluR5/COX-2/PGE2 signaling pathway.

4 citations

Journal ArticleDOI
TL;DR: Results suggest that the ephrin-A3/GLAST-GLT-1/Glu signaling pathway participates in Mn- induced excitotoxicity, and fluoxetine and riluzole can mitigate the Mn-induced excitOToxicity in mice brain.
Abstract: Manganese (Mn) is an essential element required for many biological processes and systems in the human body. Mn intoxication increases brain glutamate (Glu) levels causing neuronal damage. Recent studies have reported that ephrin-A3 regulates this glutamate transporter. However, none has explored the role of this crucial molecule in Mn-induced excitotoxicity. The present study investigated whether ephrin-A3/GLAST-GLT-1/Glu signaling pathway participates in Mn-induced excitotoxicity using astrocytes and Kunming mice. The mechanisms were explored using fluoxetine (ephrin-A3 inhibitor) and riluzole (a Glu release inhibitor). Firstly, we demonstrated that Mn exposure (500 μM or 50 mg/kg MnCl2) significantly increased Mn, ephrin-A3, and Glu levels, and inhibited Na+-K+ ATPase activity, as well as mRNA and protein levels of GLAST and GLT-1. Secondly, we found that astrocytes and mice pretreated with fluoxetine (100 μM or 15 mg/kg) and riluzole (100 μM or 32 μmol/kg) prior to Mn exposure had lower ephrin-A3 and Glu levels, but higher Na+-K+ ATPase activity, expression levels of GLAST and GLT-1 than those exposed to 500 μM or 50 mg/kg MnCl2. Moreover, the morphology of cells and the histomorphology of mice striatum were injured. Results showed that pretreatment with fluoxetine and riluzole attenuated the Mn-induced motor dysfunctions. Together, these results suggest that the ephrin-A3/GLAST-GLT-1/Glu signaling pathway participates in Mn-induced excitotoxicity, and fluoxetine and riluzole can mitigate the Mn-induced excitotoxicity in mice brain.

4 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors discuss how m6A RNA methylation influences both the physiological and pathological progressions of hematopoietic, central nervous and reproductive systems.
Abstract: N6-methyladenosine (m6A) is the most prevalent, abundant and conserved internal cotranscriptional modification in eukaryotic RNAs, especially within higher eukaryotic cells. m6A modification is modified by the m6A methyltransferases, or writers, such as METTL3/14/16, RBM15/15B, ZC3H3, VIRMA, CBLL1, WTAP, and KIAA1429, and, removed by the demethylases, or erasers, including FTO and ALKBH5. It is recognized by m6A-binding proteins YTHDF1/2/3, YTHDC1/2 IGF2BP1/2/3 and HNRNPA2B1, also known as “readers”. Recent studies have shown that m6A RNA modification plays essential role in both physiological and pathological conditions, especially in the initiation and progression of different types of human cancers. In this review, we discuss how m6A RNA methylation influences both the physiological and pathological progressions of hematopoietic, central nervous and reproductive systems. We will mainly focus on recent progress in identifying the biological functions and the underlying molecular mechanisms of m6A RNA methylation, its regulators and downstream target genes, during cancer progression in above systems. We propose that m6A RNA methylation process offer potential targets for cancer therapy in the future.

425 citations

Journal ArticleDOI
TL;DR: The m6A and m6Am methylome is reported through profiling of 43 human and 16 mouse tissues and demonstrates strongest tissue specificity for the brain tissues and cross-species analysis revealed that species rather than tissue type is the primary determinant of methylation.

148 citations

Journal ArticleDOI
TL;DR: The role of m6A modification in the regulation and function of circRNAs is summarized and the potential applications and possible future directions in the field are discussed.
Abstract: N6-methyladenosine (m6A), the most abundant modification in eukaryotic cells, regulates RNA transcription, processing, splicing, degradation, and translation. Circular RNA (circRNA) is a class of covalently closed RNA molecules characterized by universality, diversity, stability and conservatism of evolution. Accumulating evidence shows that both m6A modification and circRNAs participate in the pathogenesis of multiple diseases, such as cancers, neurological diseases, autoimmune diseases, and infertility. Recently, m6A modification has been identified for its enrichment and vital biological functions in regulating circRNAs. In this review, we summarize the role of m6A modification in the regulation and function of circRNAs. Moreover, we discuss the potential applications and possible future directions in the field.

130 citations

Journal ArticleDOI
TL;DR: NRF2 function in response to various pollutants, such as metals, pesticides and atmospheric quinones is characterized and NRF2 related signaling pathways and epigenetic regulations are reviewed.
Abstract: Living organisms are surrounded with heavy metals such as methylmercury, manganese, cobalt, cadmium, arsenic, as well as pesticides such as deltamethrin and paraquat, or atmospheric pollutants such as quinone. Extensive studies have demonstrated a strong link between environmental pollutants and human health. Redox toxicity is proposed as one of the main mechanisms of chemical-induced pathology in humans. Acting as both a sensor of oxidative stress and a positive regulator of antioxidants, the nuclear factor erythroid 2-related factor 2 (NRF2) has attracted recent attention. However, the role NRF2 plays in environmental pollutant-induced toxicity has not been systematically addressed. Here, we characterize NRF2 function in response to various pollutants, such as metals, pesticides and atmospheric quinones. NRF2 related signaling pathways and epigenetic regulations are also reviewed.

91 citations

Journal ArticleDOI
TL;DR: The mechanism of METTL3-mediated autophagy in reversing gefitinib resistance of NSCLC cells by β-elemene is unveiled, which shed light on providing potential molecular-therapy target and clinical-treatment method in NSclC patients with gefitsinib resistant cells.
Abstract: N6-methyladenosine (m6A) modification can alter gene expression by regulating RNA splicing, stability, translocation, and translation. Emerging evidence shows that m6A modification plays an important role in cancer development and progression, including cell proliferation, migration and invasion, cell apoptosis, autophagy, and drug resistance. Until now, the role of m6A modification mediated autophagy in cancer drug resistance is still unclear. In this study, we found that m6A methyltransferase METTL3-mediated autophagy played an important role in reversing gefitinib resistance by β-elemene in non-small cell lung cancer (NSCLC) cells. Mechanistically, in vitro and in vivo studies indicated that β-elemene could reverse gefitinib resistance in NSCLC cells by inhibiting cell autophagy process in a manner of chloroquine. β-elemene inhibited the autophagy flux by preventing autophagic lysosome acidification, resulting in increasing expression of SQSTM1 and LC3B-II. Moreover, both β-elemene and gefitinib decreased the level of m6A methylation of gefitinib resistance cells. METTL3 was higher expressed in lung adenocarcinoma tissues than that of paired normal tissues, and was involved in the gefitinib resistance of NSCLC cells. Furthermore, METTL3 positively regulated autophagy by increasing the critical genes of autophagy pathway such as ATG5 and ATG7. In conclusion, our study unveiled the mechanism of METTL3-mediated autophagy in reversing gefitinib resistance of NSCLC cells by β-elemene, which shed light on providing potential molecular-therapy target and clinical-treatment method in NSCLC patients with gefitinib resistance.

84 citations