scispace - formally typeset
Search or ask a question
Author

Yanru Zhang

Bio: Yanru Zhang is an academic researcher from Hunan University. The author has contributed to research in topics: Adsorption & Anaerobic digestion. The author has an hindex of 20, co-authored 37 publications receiving 1318 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a Co-doped UiO-66 nanoparticle was synthesized by a one-step solvothermal method, and the adsorbed tetracycline (TC) molecules could be removed more than 94% of initial concentration under simulative sunlight irradiation.

323 citations

Journal ArticleDOI
TL;DR: The great adsorption capacity, as well as excellent reusability, demonstrated the potential application of MWCNT/NH2-MIL-53(Fe) in the removal of TCN and CTC from aqueous solutions.

221 citations

Journal ArticleDOI
TL;DR: The enhanced adsorption capacity, excellent reusability and water stability demonstrated the potential of CuCo/MIL-101 composite as a novel adsorbent for the removal of TC from aqueous solutions.

164 citations

Journal ArticleDOI
TL;DR: In this article, the Mn-doped UiO-66 with cubic morphology was fabricated with a facile solvothermal method to investigate the adsorption performance of Mn-o-66, tetracycline (TC) and Cr(VI) were chosen as the target pollutant.

154 citations

Journal ArticleDOI
TL;DR: In this paper, an aluminum-cobalt layered double hydroxide (AlCo-LDH) with uniformly distributed component was synthesized by in-situ etching of cobalt zeolitic imidazolate framework (Co-ZIF) at room temperature.

152 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review first briefly summarizes this background of MOF nanoparticle catalysis and then comprehensively reviews the fast-growing literature reported during the last years.
Abstract: Metal-organic framework (MOF) nanoparticles, also called porous coordination polymers, are a major part of nanomaterials science, and their role in catalysis is becoming central. The extraordinary variability and richness of their structures afford engineering synergies between the metal nodes, functional linkers, encapsulated substrates, or nanoparticles for multiple and selective heterogeneous interactions and activations in these MOF-based nanocatalysts. Pyrolysis of MOF-nanoparticle composites forms highly porous N- or P-doped graphitized MOF-derived nanomaterials that are increasingly used as efficient catalysts especially in electro- and photocatalysis. This review first briefly summarizes this background of MOF nanoparticle catalysis and then comprehensively reviews the fast-growing literature reported during the last years. The major parts are catalysis of organic and molecular reactions, electrocatalysis, photocatalysis, and views of prospects. Major challenges of our society are addressed using these well-defined heterogeneous catalysts in the fields of synthesis, energy, and environment. In spite of the many achievements, enormous progress is still necessary to improve our understanding of the processes involved beyond the proof-of-concept, particularly for selective methane oxidation, hydrogen production, water splitting, CO2 reduction to methanol, nitrogen fixation, and water depollution.

1,233 citations

Journal ArticleDOI
TL;DR: This review highlights the advances in the use of MOFs in the elimination (adsorption and/or degradation) of EOCs from water, classifying them by the nature of the contaminant.
Abstract: Water is essential in all aspects of life, being the defining characteristic of our planet and even our body. Regrettably, water pollution is increasingly becoming a challenge due to novel anthropogenic pollutants. Of particular concern are emerging organic contaminants (EOCs), the term used not only to cover newly developed compounds but also compounds newly discovered as contaminants in the environment. Aside from anthropogenic contamination, higher temperature and more extreme and less predictable weather conditions are projected to affect water availability and distribution. Therefore, wastewater treatment has to become a valuable water resource and its reuse is an important issue that must be carried out efficiently. Among the novel technologies considered in water remediation processes, metal-organic frameworks (MOFs) are regarded as promising materials for the elimination of EOCs since they present many properties that commend them in water treatment: large surface area, easy functionalizable cavities, some are stable in water, and synthesized at large scale, etc. This review highlights the advances in the use of MOFs in the elimination (adsorption and/or degradation) of EOCs from water, classifying them by the nature of the contaminant.

542 citations

Journal ArticleDOI
TL;DR: In this paper, a metal-free heterostructure photocatalyst constructed by boron nitride quantum dots (BNQDs) and ultrathin porous g-C3N4 (UPCN) was successfully developed for overcoming these defects.
Abstract: Graphitic carbon nitride (g-C3N4) has enormous potential for photocatalysis, but only possesses moderate activity because of excitonic effects and sluggish charge transfer. Herein, metal-free heterostructure photocatalyst constructed by boron nitride quantum dots (BNQDs) and ultrathin porous g-C3N4 (UPCN) was successfully developed for overcoming these defects. Results showed that the BNQDs loaded UPCN can simultaneously promote the dissociation of excitons and accelerate the transfer of charges owing to the negatively charged functional groups on the surface of BNQDs as well as the ultrathin and porous nanostructure of g-C3N4. Benefiting from the intensified exciton dissociation and charge transfer, the BNQDs/UPCN (BU) photocatalyst presented superior visible-light-driven molecular oxygen activation ability, such as superoxide radical ( O2−) generation and hydrogen peroxide (H2O2) production. The average O2− generation rate of the optimal sample (BU-3) was estimated to be 0.25 μmol L−1 min−1, which was about 2.3 and 1.6 times than that of bulk g-C3N4 and UPCN. Moreover, the H2O2 production by BU-3 was also higher than that of bulk g-C3N4 (22.77 μmol L−1) and UPCN (36.13 μmol L−1), and reached 72.30 μmol L−1 over 60 min. This work reveals how rational combination of g-C3N4 with BNQDs can endow it with improved photocatalytic activity for molecular oxygen activation, and provides a novel metal-free and highly efficient photocatalyst for environmental remediation and energy conversion.

512 citations

Journal ArticleDOI
TL;DR: In this article, a facile synthesized porous graphitic carbon with microtubular structure, high graphitization degree and abundant porosity demonstrates an outstanding advantage of excellent conductivity and facilitated mass transport.
Abstract: The preparation processes of efficient photocatalyst containing defect regulation and heterostructure construction are usually complicated and difficult to control at present, besides, the catalyst agglomeration in solution further limits their application. There is an urgent need for designing a potentially cheap, efficient, sustainable and easy-prepared nanocomposite to improve photocatalytic performance. In present study, the facile synthesized porous graphitic carbon with microtubular structure, high graphitization degree and abundant porosity demonstrates an outstanding advantage of excellent conductivity and facilitated mass transport. Such porous graphite biochar (PGBC) self-assembled with g-MoS2 nanosheets is observed by the optimized band gap, enhanced visible light harvesting, accelerated charge transfer and efficient photo-generated carrier’s separation. Considering the favorable specific surface area and pore distribution of PGBC for avoiding nanosheet agglomeration, the as-prepared composites display quite high efficiency for tetracycline hydrochloride (TC) removal based on the synergistic action of the desirable absorption and photocatalytic capability. Mechanism exploration indicates that surface adsorption is mainly dominated by electrostatic interaction, hydrogen bonding, π-π stacking and pore-filling, and hole (h+) and hydroxyl radical (·OH) are the predominant active species responsible for TC degradation. Furthermore, the nanocomposites possess advisable stability performance for TC removal in contaminated river water, further providing an underlying insight for establishing high-efficient and easy-prepared photocatalysts in practical contaminated water remediation.

494 citations

Journal ArticleDOI
TL;DR: In this article, an interfacial Schottky junction composed of Ti3C2 and porous g-C3N4 nanosheets (TC/pCN) is constructed by a facile electrostatic self-assembly route to significantly boost the spatial charge separation to promote the activation of molecular oxygen for H2O2 production.
Abstract: The development of efficient photocatalysts for the production of hydrogen peroxide (H2O2) is a promising strategy to realize solar-to-chemical energy conversion. Graphitic carbon nitride (g-C3N4) presents giant potential for photocatalytic H2O2 production, but the sluggish charge separation depresses its photocatalytic performance. Herein, an interfacial Schottky junction composed of Ti3C2 nanosheets and porous g-C3N4 nanosheets (TC/pCN) is constructed by a facile electrostatic self-assembly route to significantly boost the spatial charge separation to promote the activation of molecular oxygen for H2O2 production. As the optimal sample, TC/pCN-2 possesses the highest H2O2 production rate (2.20 μmol L−1 min−1) under visible light irradiation (λ > 420 nm), which is about 2.1 times than that of the porous g-C3N4. The results of superoxide radical detection and rotating disk electrode measurement suggest that the two-step single-electron reduction of oxygen is the predominant reaction step during this photocatalytic H2O2 production process. The enhanced photocatalytic performance is ascribed to the formation of Schottky junction and subsequent built-in electric field at their interface, which accelerate the spatial charge separation and restrain the charge recombination. This work provides an in-depth understanding of the mechanism of photocatalytic H2O2 production, and gives ideas for the design of highly active materials for photocatalytic H2O2 production.

427 citations