scispace - formally typeset
Search or ask a question
Author

Yao Zhao

Bio: Yao Zhao is an academic researcher from Beijing Jiaotong University. The author has contributed to research in topics: Computer science & Feature (computer vision). The author has an hindex of 35, co-authored 524 publications receiving 6660 citations. Previous affiliations of Yao Zhao include Texas A&M University & University of Electronic Science and Technology of China.


Papers
More filters
Journal ArticleDOI
TL;DR: Experimental results on Pascal VOC 2007 and VOC 2012 multi-label image datasets well demonstrate the superiority of the proposed HCP infrastructure over other state-of-the-arts, where an arbitrary number of object segment hypotheses are taken as the inputs.
Abstract: Convolutional Neural Network (CNN) has demonstrated promising performance in single-label image classification tasks. However, how CNN best copes with multi-label images still remains an open problem, mainly due to the complex underlying object layouts and insufficient multi-label training images. In this work, we propose a flexible deep CNN infrastructure, called Hypotheses-CNN-Pooling (HCP), where an arbitrary number of object segment hypotheses are taken as the inputs, then a shared CNN is connected with each hypothesis, and finally the CNN output results from different hypotheses are aggregated with max pooling to produce the ultimate multi-label predictions. Some unique characteristics of this flexible deep CNN infrastructure include: 1) no ground-truth bounding box information is required for training; 2) the whole HCP infrastructure is robust to possibly noisy and/or redundant hypotheses; 3) the shared CNN is flexible and can be well pre-trained with a large-scale single-label image dataset, e.g., ImageNet; and 4) it may naturally output multi-label prediction results. Experimental results on Pascal VOC 2007 and VOC 2012 multi-label image datasets well demonstrate the superiority of the proposed HCP infrastructure over other state-of-the-arts. In particular, the mAP reaches 90.5% by HCP only and 93.2% after the fusion with our complementary result in [12] based on hand-crafted features on the VOC 2012 dataset.

722 citations

Journal ArticleDOI
TL;DR: A simple to complex (STC) framework in which only image-level annotations are utilized to learn DCNNs for semantic segmentation, which demonstrates the superiority of the proposed STC framework compared with other state-of-the-arts frameworks.
Abstract: Recently, significant improvement has been made on semantic object segmentation due to the development of deep convolutional neural networks (DCNNs). Training such a DCNN usually relies on a large number of images with pixel-level segmentation masks, and annotating these images is very costly in terms of both finance and human effort. In this paper, we propose a simple to complex (STC) framework in which only image-level annotations are utilized to learn DCNNs for semantic segmentation. Specifically, we first train an initial segmentation network called Initial-DCNN with the saliency maps of simple images (i.e., those with a single category of major object(s) and clean background). These saliency maps can be automatically obtained by existing bottom-up salient object detection techniques, where no supervision information is needed. Then, a better network called Enhanced-DCNN is learned with supervision from the predicted segmentation masks of simple images based on the Initial-DCNN as well as the image-level annotations. Finally, more pixel-level segmentation masks of complex images (two or more categories of objects with cluttered background), which are inferred by using Enhanced-DCNN and image-level annotations, are utilized as the supervision information to learn the Powerful-DCNN for semantic segmentation. Our method utilizes 40K simple images from Flickr.com and 10K complex images from PASCAL VOC for step-wisely boosting the segmentation network. Extensive experimental results on PASCAL VOC 2012 segmentation benchmark well demonstrate the superiority of the proposed STC framework compared with other state-of-the-arts.

526 citations

Journal ArticleDOI
TL;DR: This paper proposes to consider every two adjacent prediction-errors jointly to generate a sequence consisting of prediction-error pairs, and based on the sequence and the resulting 2D prediction- error histogram, a more efficient embedding strategy, namely, pairwise PEE, can be designed to achieve an improved performance.
Abstract: In prediction-error expansion (PEE) based reversible data hiding, better exploiting image redundancy usually leads to a superior performance. However, the correlations among prediction-errors are not considered and utilized in current PEE based methods. Specifically, in PEE, the prediction-errors are modified individually in data embedding. In this paper, to better exploit these correlations, instead of utilizing prediction-errors individually, we propose to consider every two adjacent prediction-errors jointly to generate a sequence consisting of prediction-error pairs. Then, based on the sequence and the resulting 2D prediction-error histogram, a more efficient embedding strategy, namely, pairwise PEE, can be designed to achieve an improved performance. The superiority of our method is verified through extensive experiments.

422 citations

Journal ArticleDOI
TL;DR: Off-the-shelf CNN visual features are extracted from the CNN model, which is pretrained on ImageNet with more than one million images from 1000 object categories, as a generic image representation to tackle cross-modal retrieval.
Abstract: Recently, convolutional neural network (CNN) visual features have demonstrated their powerful ability as a universal representation for various recognition tasks. In this paper, cross-modal retrieval with CNN visual features is implemented with several classic methods. Specifically, off-the-shelf CNN visual features are extracted from the CNN model, which is pretrained on ImageNet with more than one million images from 1000 object categories, as a generic image representation to tackle cross-modal retrieval. To further enhance the representational ability of CNN visual features, based on the pretrained CNN model on ImageNet, a fine-tuning step is performed by using the open source Caffe CNN library for each target data set. Besides, we propose a deep semantic matching method to address the cross-modal retrieval problem with respect to samples which are annotated with one or multiple labels. Extensive experiments on five popular publicly available data sets well demonstrate the superiority of CNN visual features for cross-modal retrieval.

329 citations

Journal ArticleDOI
TL;DR: In this paper, an evolutionary attention-based LSTM training with competitive random search is proposed for multivariate time series prediction, which can help to capture long-term dependencies and pay different degree of attention on subwindow feature within multiple time-steps.
Abstract: Time series prediction with deep learning methods, especially Long Short-term Memory Neural Network (LSTM), have scored significant achievements in recent years. Despite the fact that LSTM can help to capture long-term dependencies, its ability to pay different degree of attention on sub-window feature within multiple time-steps is insufficient. To address this issue, an evolutionary attention-based LSTM training with competitive random search is proposed for multivariate time series prediction. By transferring shared parameters, an evolutionary attention learning approach is introduced to LSTM. Thus, like that for biological evolution, the pattern for importance-based attention sampling can be confirmed during temporal relationship mining. To refrain from being trapped into partial optimization like traditional gradient-based methods, an evolutionary computation inspired competitive random search method is proposed, which can well configure the parameters in the attention layer. Experimental results have illustrated that the proposed model can achieve competetive prediction performance compared with other baseline methods.

236 citations


Cited by
More filters
Proceedings ArticleDOI
01 Jun 2016
TL;DR: This work introduces Cityscapes, a benchmark suite and large-scale dataset to train and test approaches for pixel-level and instance-level semantic labeling, and exceeds previous attempts in terms of dataset size, annotation richness, scene variability, and complexity.
Abstract: Visual understanding of complex urban street scenes is an enabling factor for a wide range of applications. Object detection has benefited enormously from large-scale datasets, especially in the context of deep learning. For semantic urban scene understanding, however, no current dataset adequately captures the complexity of real-world urban scenes. To address this, we introduce Cityscapes, a benchmark suite and large-scale dataset to train and test approaches for pixel-level and instance-level semantic labeling. Cityscapes is comprised of a large, diverse set of stereo video sequences recorded in streets from 50 different cities. 5000 of these images have high quality pixel-level annotations, 20 000 additional images have coarse annotations to enable methods that leverage large volumes of weakly-labeled data. Crucially, our effort exceeds previous attempts in terms of dataset size, annotation richness, scene variability, and complexity. Our accompanying empirical study provides an in-depth analysis of the dataset characteristics, as well as a performance evaluation of several state-of-the-art approaches based on our benchmark.

7,547 citations

Proceedings ArticleDOI
14 May 2014
TL;DR: It is shown that the data augmentation techniques commonly applied to CNN-based methods can also be applied to shallow methods, and result in an analogous performance boost, and it is identified that the dimensionality of the CNN output layer can be reduced significantly without having an adverse effect on performance.
Abstract: The latest generation of Convolutional Neural Networks (CNN) have achieved impressive results in challenging benchmarks on image recognition and object detection, significantly raising the interest of the community in these methods. Nevertheless, it is still unclear how different CNN methods compare with each other and with previous state-of-the-art shallow representations such as the Bag-of-Visual-Words and the Improved Fisher Vector. This paper conducts a rigorous evaluation of these new techniques, exploring different deep architectures and comparing them on a common ground, identifying and disclosing important implementation details. We identify several useful properties of CNN-based representations, including the fact that the dimensionality of the CNN output layer can be reduced significantly without having an adverse effect on performance. We also identify aspects of deep and shallow methods that can be successfully shared. In particular, we show that the data augmentation techniques commonly applied to CNN-based methods can also be applied to shallow methods, and result in an analogous performance boost. Source code and models to reproduce the experiments in the paper is made publicly available.

3,533 citations