scispace - formally typeset
Search or ask a question
Author

Yaowu Zheng

Bio: Yaowu Zheng is an academic researcher from Northeast Normal University. The author has contributed to research in topics: Thrombin & Gene. The author has an hindex of 22, co-authored 58 publications receiving 7022 citations. Previous affiliations of Yaowu Zheng include University of California, San Francisco & United States Department of Veterans Affairs.


Papers
More filters
Journal ArticleDOI
TL;DR: An expressed sequence tag clone that shared regions of similarity with acyl CoA:cholesterol acyltransferase, an enzyme that also uses fatty acyl coA as a substrate was identified, which will greatly facilitate studies of cellular glycerolipid metabolism and its regulation.
Abstract: Triacylglycerols are quantitatively the most important storage form of energy for eukaryotic cells Acyl CoA:diacylglycerol acyltransferase (DGAT, EC 23120) catalyzes the terminal and only committed step in triacylglycerol synthesis, by using diacylglycerol and fatty acyl CoA as substrates DGAT plays a fundamental role in the metabolism of cellular diacylglycerol and is important in higher eukaryotes for physiologic processes involving triacylglycerol metabolism such as intestinal fat absorption, lipoprotein assembly, adipose tissue formation, and lactation DGAT is an integral membrane protein that has never been purified to homogeneity, nor has its gene been cloned We identified an expressed sequence tag clone that shared regions of similarity with acyl CoA:cholesterol acyltransferase, an enzyme that also uses fatty acyl CoA as a substrate Expression of a mouse cDNA for this expressed sequence tag in insect cells resulted in high levels of DGAT activity in cell membranes No other acyltransferase activity was detected when a variety of substrates, including cholesterol, were used as acyl acceptors The gene was expressed in all tissues examined; during differentiation of NIH 3T3-L1 cells into adipocytes, its expression increased markedly in parallel with increases in DGAT activity The identification of this cDNA encoding a DGAT will greatly facilitate studies of cellular glycerolipid metabolism and its regulation

1,117 citations

Journal ArticleDOI
13 Aug 1998-Nature
TL;DR: It is reported that thrombin responses in platelets from PAR3-deficient mice were markedly delayed and diminished but not absent, and the identification of a two-receptor system for platelet activation byThrombin has important implications for the development of antithrombotic therapies.
Abstract: Platelet-dependent arterial thrombosis triggers most heart attacks and strokes. Because the coagulation protease thrombin is the most potent activator of platelets, identification of the platelet receptors for thrombin is critical for understanding thrombosis and haemostasis. Protease-activated receptor-1 (PAR1) is important for activation of human platelets by thrombin, but plays no apparent role in mouse platelet activation. PAR3 is a thrombin receptor that is expressed in mouse megakaryocytes. Here we report that thrombin responses in platelets from PAR3-deficient mice were markedly delayed and diminished but not absent. We have also identified PAR4, a new thrombin-activated receptor. PAR4 messenger RNA was detected in mouse megakaryocytes and a PAR4-activating peptide caused secretion and aggregation of PAR3-deficient mouse platelets. Thus PAR3 is necessary for normal thrombin responses in mouse platelets, but a second PAR4-mediated mechanism for thrombin signalling exists. Studies with PAR-activating peptides suggest that PAR4 also functions in human platelets, which implies that an analogous dual-receptor system also operates in humans. The identification of a two-receptor system for platelet activation by thrombin has important implications for the development of antithrombotic therapies.

995 citations

Journal ArticleDOI
03 Apr 1997-Nature
TL;DR: Cl cloning and characterization of a new human thrombin receptor, designated protease-activated receptor 3 (PAR3) is reported, which can mediate throm-bin-triggered phosphoinositide hydrolysis and is expressed in a variety of tissues, making it a candidate for the sought-after second platelet throm bin receptor.
Abstract: Thrombin is a coagulation protease that activates platelets, leukocytes, endothelial and mesenchymal cells at sites of vascular injury, acting partly through an unusual proteolytically activated G-protein-coupled receptor1–3. Knockout of the gene encoding this receptor provided definitive evidence for a second thrombin receptor in mouse platelets and for tissue-specific roles for different thrombin receptors4. We now report the cloning and characterization of a new human thrombin receptor, designated protease-activated receptor 3 (PAR3). PAR3 can mediate throm-bin-triggered phosphoinositide hydrolysis and is expressed in a variety of tissues, including human bone marrow and mouse megakaryocytes, making it a candidate for the sought-after second platelet thrombin receptor. PAR3 provides a new tool for understanding thrombin signalling and a possible target for therapeutics designed selectively to block thrombotic, inflammatory and proliferative responses to thrombin.

887 citations

Journal ArticleDOI
13 Apr 2007-Science
TL;DR: Separate sources provide S1P to plasma and lymph to help lymphocytes exit the low-S1P environment of lymphoid organs, and disruption of compartmentalized S 1P signaling is a plausible mechanism by which S1p-receptor-1 agonists function as immunosuppressives.
Abstract: Lymphocytes require sphingosine-1-phosphate (S1P) receptor-1 to exit lymphoid organs, but the source(s) of extracellular S1P and whether S1P directly promotes egress are unknown. By using mice in which the two kinases that generate S1P were conditionally ablated, we find that plasma S1P is mainly hematopoietic in origin, with erythrocytes a major contributor, whereas lymph S1P is from a distinct radiation-resistant source. Lymphocyte egress from thymus and secondary lymphoid organs was markedly reduced in kinase-deficient mice. Restoration of S1P to plasma rescued egress to blood but not lymph, and the rescue required lymphocyte expression of S1P-receptor-1. Thus, separate sources provide S1P to plasma and lymph to help lymphocytes exit the low-S1P environment of lymphoid organs. Disruption of compartmentalized S1P signaling is a plausible mechanism by which S1P-receptor-1 agonists function as immunosuppressives.

861 citations

Journal ArticleDOI
06 Apr 2000-Nature
TL;DR: This article showed that mPAR3 does not itself mediate transmembrane signalling but instead functions as a cofactor for the cleavage and activation of mPAR4 by thrombin.
Abstract: Identification of the mechanisms by which the coagulation protease thrombin activates platelets is critical for understanding haemostasis and thrombosis. Thrombin activates cells at least in part by cleaving protease-activated G-protein-coupled receptors (PARs)1. PAR3 and PAR4 are thrombin receptors expressed in mouse platelets2,3. Inhibition of thrombin binding to mPAR3 (ref. 4) and knockout of the mPAR3 gene3 inhibited mouse platelet activation at low but not high concentrations of thrombin. Thus PAR3 is important for thrombin signalling in mouse platelets. Expression of human PAR3 in heterologous expression systems reliably resulted in responsiveness to thrombin2. Curiously, despite its importance for the activation of mouse platelets by thrombin3,4, mouse PAR3 (mPAR3) did not lead to thrombin signalling even when overexpressed. We now report that mPAR3 and mPAR4 interact in a novel way: mPAR3 does not itself mediate transmembrane signalling but instead functions as a cofactor for the cleavage and activation of mPAR4 by thrombin. This establishes a paradigm for cofactor-assisted PAR activation and for a G-protein-coupled receptor's acting as an accessory molecule to present ligand to another receptor.

534 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The focus of this review is to provide an overview of the current state of knowledge of molecular mechanisms/processes that control differentiation of vascular smooth muscle cells (SMC) during normal development and maturation of the vasculature, as well as how these mechanisms/ processeses are altered in vascular injury or disease.
Abstract: The focus of this review is to provide an overview of the current state of knowledge of molecular mechanisms/processes that control differentiation of vascular smooth muscle cells (SMC) during normal development and maturation of the vasculature, as well as how these mechanisms/processes are altered in vascular injury or disease. A major challenge in understanding differentiation of the vascular SMC is that this cell can exhibit a wide range of different phenotypes at different stages of development, and even in adult organisms the cell is not terminally differentiated. Indeed, the SMC is capable of major changes in its phenotype in response to changes in local environmental cues including growth factors/inhibitors, mechanical influences, cell-cell and cell-matrix interactions, and various inflammatory mediators. There has been much progress in recent years to identify mechanisms that control expression of the repertoire of genes that are specific or selective for the vascular SMC and required for its differentiated function. One of the most exciting recent discoveries was the identification of the serum response factor (SRF) coactivator gene myocardin that appears to be required for expression of many SMC differentiation marker genes, and for initial differentiation of SMC during development. However, it is critical to recognize that overall control of SMC differentiation/maturation, and regulation of its responses to changing environmental cues, is extremely complex and involves the cooperative interaction of many factors and signaling pathways that are just beginning to be understood. There is also relatively recent evidence that circulating stem cell populations can give rise to smooth muscle-like cells in association with vascular injury and atherosclerotic lesion development, although the exact role and properties of these cells remain to be clearly elucidated. The goal of this review is to summarize the current state of our knowledge in this area and to attempt to identify some of the key unresolved challenges and questions that require further study.

3,051 citations

Journal ArticleDOI
15 May 1998-Blood
TL;DR: The membrane has long been viewed as an inert cellophane-like membrane that lines the circulatory system with its primary essential function being the maintenance of vessel wall permeability.

2,368 citations

Journal ArticleDOI
14 Sep 2000-Nature
TL;DR: Roles for PARs are beginning to emerge in haemostasis and thrombosis, inflammation, and perhaps even blood vessel development.
Abstract: How does the coagulation protease thrombin regulate cellular behaviour? The protease-activated receptors (PARs) provide one answer. In concert with the coagulation cascade, these receptors provide an elegant mechanism linking mechanical information in the form of tissue injury or vascular leakage to cellular responses. Roles for PARs are beginning to emerge in haemostasis and thrombosis, inflammation, and perhaps even blood vessel development.

2,354 citations

Journal ArticleDOI
TL;DR: Many genes and pathways that regulate brown and beige adipocyte biology have now been identified, providing a variety of promising therapeutic targets for metabolic disease.
Abstract: Adipose tissue, best known for its role in fat storage, can also suppress weight gain and metabolic disease through the action of specialized, heat-producing adipocytes. Brown adipocytes are located in dedicated depots and express constitutively high levels of thermogenic genes, whereas inducible 'brown-like' adipocytes, also known as beige cells, develop in white fat in response to various activators. The activities of brown and beige fat cells reduce metabolic disease, including obesity, in mice and correlate with leanness in humans. Many genes and pathways that regulate brown and beige adipocyte biology have now been identified, providing a variety of promising therapeutic targets for metabolic disease.

1,842 citations

Journal ArticleDOI
TL;DR: Compounds Currently in Phase II−III Clinical Trials of Major Pharmaceutical Companies: New Structural Trends and Therapeutic Areas is presented.
Abstract: Compounds Currently in Phase II−III Clinical Trials of Major Pharmaceutical Companies: New Structural Trends and Therapeutic Areas Yu Zhou,† Jiang Wang,† Zhanni Gu,† Shuni Wang,† Wei Zhu,† Jose ́ Luis Aceña,*,‡,§ Vadim A. Soloshonok,*,‡,∥ Kunisuke Izawa,* and Hong Liu*,† †Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China ‡Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizab́al 3, 20018 San Sebastiań, Spain Department of Organic Chemistry, Autońoma University of Madrid, Cantoblanco, 28049 Madrid, Spain IKERBASQUE, Basque Foundation for Science, María Díaz de Haro 3, 48013 Bilbao, Spain Hamari Chemicals Ltd., 1-4-29 Kunijima, Higashi-Yodogawa-ku, Osaka, Japan 533-0024

1,740 citations