scispace - formally typeset
Search or ask a question
Author

Yaozhong Zou

Bio: Yaozhong Zou is an academic researcher from Stanford University. The author has contributed to research in topics: G protein-coupled receptor & Agonist. The author has an hindex of 7, co-authored 9 publications receiving 3839 citations.

Papers
More filters
Journal ArticleDOI
29 Sep 2011-Nature
TL;DR: This crystal structure represents the first high-resolution view of transmembrane signalling by a GPCR and the most surprising observation is a major displacement of the α-helical domain of Gαs relative to the Ras-like GTPase domain.
Abstract: G protein-coupled receptors (GPCRs) are responsible for the majority of cellular responses to hormones and neurotransmitters as well as the senses of sight, olfaction and taste. The paradigm of GPCR signalling is the activation of a heterotrimeric GTP binding protein (G protein) by an agonist-occupied receptor. The b2 adrenergic receptor (b2AR) activation of Gs, the stimulatory G protein for adenylyl cyclase, has long been a model system for GPCR signalling. Here we present the crystal structure of the active state ternary complex composed of agonist-occupied monomericb2AR and nucleotide-free Gs heterotrimer. The principal interactions between the b2AR and Gs involve the amino- and carboxy-terminal a-helices of Gs, with conformational changes propagating to the nucleotide-binding pocket. The

2,676 citations

Journal ArticleDOI
31 Jan 2013-Cell
TL;DR: NMR spectroscopy is used to characterize the conformational dynamics of the transmembrane core of the β(2)-adrenergic receptor (β(2)AR), a prototypical GPCR, and shows that for β( 2)AR, unlike rhodopsin, an agonist alone does not stabilize a fully active conformation.

688 citations

Journal ArticleDOI
07 Jan 2010-Nature
TL;DR: NMR spectroscopy is used to demonstrate conformational coupling between the ECS and the orthosteric binding site, showing that drugs targeting this diverse surface could function as allosteric modulators with high subtype selectivity.
Abstract: G-protein-coupled receptors (GPCRs) mediate the majority of cellular responses to hormones and neurotransmitters, and these membrane proteins are the largest group of therapeutic targets for a broad range of diseases. It is very difficult to obtain high-resolution X-ray crystal structures of GPCRs; little is known about the functional role(s) of the extracellular surface in receptor activation or about the conformational coupling of the extracellular surface to the native ligand-binding pocket. In this study, Bokoch et al. used NMR spectroscopy to investigate ligand-specific conformational changes around a salt bridge linking extracellular loops 2 and 3 of the β2 adrenergic receptor. They found that drugs that bind within the transmembrane core (and exhibit different efficacies towards G-protein activation) stabilize distinct conformations of the extracellular surface. New therapeutic agents that target this diverse surface could function as allosteric modulators with high subtype selectivity. G-protein-coupled receptors (GPCRs) mediate the majority of cellular responses to hormones and neurotransmitters and are the largest group of therapeutic targets for a range of diseases. The extracellular surface (ECS) of GPCRs is diverse and therefore an ideal target for the discovery of subtype-selective drugs. Here, NMR spectroscopy is used to investigate ligand-specific conformational changes around a central structural feature in the ECS of a GPCR. G-protein-coupled receptors (GPCRs) are seven-transmembrane proteins that mediate most cellular responses to hormones and neurotransmitters. They are the largest group of therapeutic targets for a broad spectrum of diseases. Recent crystal structures of GPCRs1,2,3,4,5 have revealed structural conservation extending from the orthosteric ligand-binding site in the transmembrane core to the cytoplasmic G-protein-coupling domains. In contrast, the extracellular surface (ECS) of GPCRs is remarkably diverse and is therefore an ideal target for the discovery of subtype-selective drugs. However, little is known about the functional role of the ECS in receptor activation, or about conformational coupling of this surface to the native ligand-binding pocket. Here we use NMR spectroscopy to investigate ligand-specific conformational changes around a central structural feature in the ECS of the β2 adrenergic receptor: a salt bridge linking extracellular loops 2 and 3. Small-molecule drugs that bind within the transmembrane core and exhibit different efficacies towards G-protein activation (agonist, neutral antagonist and inverse agonist) also stabilize distinct conformations of the ECS. We thereby demonstrate conformational coupling between the ECS and the orthosteric binding site, showing that drugs targeting this diverse surface could function as allosteric modulators with high subtype selectivity. Moreover, these studies provide a new insight into the dynamic behaviour of GPCRs not addressable by static, inactive-state crystal structures.

452 citations

01 Jan 2013
TL;DR: In this paper, NMR spectroscopy was used to characterize the conformational dynamics of the transmembrane core of the b2-adrenergic receptor (b2AR), a prototypical GPCR.
Abstract: SUMMARY G-protein-coupled receptors (GPCRs) can modulate diverse signaling pathways, often in a ligand-specific manner. The full range of functionally relevant GPCR conformations is poorly understood. Here, we use NMR spectroscopy to characterize the conformational dynamics of the transmembrane core of the b2-adrenergic receptor (b2AR), a prototypical GPCR. We labeled b2AR with 13 CH3e-methionine and obtained HSQC spectra of unliganded receptor as well as receptor bound to an inverse agonist, an agonist, and a G-protein-mimetic nanobody. These studies provide evidence for conformational states not observed in crystal structures, as well as substantial conformational heterogeneity in agonistand inverse-agonist-bound preparations. They also show that for b2AR, unlike rhodopsin, an agonist alone does not stabilize a fully active conformation, suggesting that the conformational link between the agonist-binding pocket and the G-proteincoupling surface is not rigid. The observed heterogeneity may be important for b2AR’s ability to engage multiple signaling and regulatory proteins.

221 citations

Journal ArticleDOI
TL;DR: The active-state structure of a GPCR occupied by a partial agonist, β2AR with salmeterol, together with mutagenesis and biophysical studies, explains this ligand's unusual pharmacological profile.
Abstract: Salmeterol is a partial agonist for the β2 adrenergic receptor (β2AR) and the first long-acting β2AR agonist to be widely used clinically for the treatment of asthma and chronic obstructive pulmonary disease. Salmeterol's safety and mechanism of action have both been controversial. To understand its unusual pharmacological action and partial agonism, we obtained the crystal structure of salmeterol-bound β2AR in complex with an active-state-stabilizing nanobody. The structure reveals the location of the salmeterol exosite, where sequence differences between β1AR and β2AR explain the high receptor-subtype selectivity. A structural comparison with the β2AR bound to the full agonist epinephrine reveals differences in the hydrogen-bond network involving residues Ser2045.43 and Asn2936.55. Mutagenesis and biophysical studies suggested that these interactions lead to a distinct active-state conformation that is responsible for the partial efficacy of G-protein activation and the limited β-arrestin recruitment for salmeterol.

138 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: An up-to-date analysis of all GPCR drugs and agents in clinical trials is reported, which reveals current trends across molecule types, drug targets and therapeutic indications, including showing that 475 drugs act at 108 unique GPCRs.
Abstract: G protein-coupled receptors (GPCRs) are the most intensively studied drug targets, mostly due to their substantial involvement in human pathophysiology and their pharmacological tractability. Here, we report an up-to-date analysis of all GPCR drugs and agents in clinical trials, which reveals current trends across molecule types, drug targets and therapeutic indications, including showing that 475 drugs (~34% of all drugs approved by the US Food and Drug Administration (FDA)) act at 108 unique GPCRs. Approximately 321 agents are currently in clinical trials, of which ~20% target 66 potentially novel GPCR targets without an approved drug, and the number of biological drugs, allosteric modulators and biased agonists has increased. The major disease indications for GPCR modulators show a shift towards diabetes, obesity and Alzheimer disease, although several central nervous system disorders are also highly represented. The 224 (56%) non-olfactory GPCRs that have not yet been explored in clinical trials have broad untapped therapeutic potential, particularly in genetic and immune system disorders. Finally, we provide an interactive online resource to analyse and infer trends in GPCR drug discovery.

1,588 citations

Journal ArticleDOI
TL;DR: Computer-aided drug discovery/design methods have played a major role in the development of therapeutically important small molecules for over three decades and theory behind the most important methods and recent successful applications are discussed.
Abstract: Computer-aided drug discovery/design methods have played a major role in the development of therapeutically important small molecules for over three decades. These methods are broadly classified as either structure-based or ligand-based methods. Structure-based methods are in principle analogous to high-throughput screening in that both target and ligand structure information is imperative. Structure-based approaches include ligand docking, pharmacophore, and ligand design methods. The article discusses theory behind the most important methods and recent successful applications. Ligand-based methods use only ligand information for predicting activity depending on its similarity/dissimilarity to previously known active ligands. We review widely used ligand-based methods such as ligand-based pharmacophores, molecular descriptors, and quantitative structure-activity relationships. In addition, important tools such as target/ligand data bases, homology modeling, ligand fingerprint methods, etc., necessary for successful implementation of various computer-aided drug discovery/design methods in a drug discovery campaign are discussed. Finally, computational methods for toxicity prediction and optimization for favorable physiologic properties are discussed with successful examples from literature.

1,362 citations

Journal ArticleDOI
14 Feb 2013-Nature
TL;DR: Through a systematic analysis of high-resolution GPCR structures, a conserved network of non-covalent contacts that defines the G PCR fold is uncovered and characteristic features of ligand binding and conformational changes during receptor activation are revealed.
Abstract: G-protein-coupled receptors (GPCRs) are physiologically important membrane proteins that sense signalling molecules such as hormones and neurotransmitters, and are the targets of several prescribed drugs. Recent exciting developments are providing unprecedented insights into the structure and function of several medically important GPCRs. Here, through a systematic analysis of high-resolution GPCR structures, we uncover a conserved network of non-covalent contacts that defines the GPCR fold. Furthermore, our comparative analysis reveals characteristic features of ligand binding and conformational changes during receptor activation. A holistic understanding that integrates molecular and systems biology of GPCRs holds promise for new therapeutics and personalized medicine.

1,296 citations

Journal ArticleDOI
17 May 2012-Nature
TL;DR: The 2.8 Å crystal structure of the mouse µ-OR in complex with an irreversible morphinan antagonist is described, revealing high-resolution insights into opioid receptor structure that will enable the application of structure-based approaches to develop better drugs for the management of pain and addiction.
Abstract: Opium is one of the world's oldest drugs, and its derivatives morphine and codeine are among the most used clinical drugs to relieve severe pain. These prototypical opioids produce analgesia as well as many undesirable side effects (sedation, apnoea and dependence) by binding to and activating the G-protein-coupled µ-opioid receptor (µ-OR) in the central nervous system. Here we describe the 2.8 A crystal structure of the mouse µ-OR in complex with an irreversible morphinan antagonist. Compared to the buried binding pocket observed in most G-protein-coupled receptors published so far, the morphinan ligand binds deeply within a large solvent-exposed pocket. Of particular interest, the µ-OR crystallizes as a two-fold symmetrical dimer through a four-helix bundle motif formed by transmembrane segments 5 and 6. These high-resolution insights into opioid receptor structure will enable the application of structure-based approaches to develop better drugs for the management of pain and addiction.

1,235 citations

Journal ArticleDOI
17 Feb 2016-Neuron
TL;DR: A primer on DREADDs is provided highlighting key technical and conceptual considerations and identify challenges for chemogenetics going forward.

1,145 citations