scispace - formally typeset
Search or ask a question
Author

Yaping Li

Bio: Yaping Li is an academic researcher from Beijing University of Chemical Technology. The author has contributed to research in topics: Oxygen evolution & Overpotential. The author has an hindex of 29, co-authored 56 publications receiving 4074 citations.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: It is demonstrated that a three-dimensional architecture of NiFe layered double hydroxide (NiFe-LDH) significantly reduced the onset potential, yielded high current density at small overpotentials, and showed outstanding stability in electrochemical oxygen evolution reaction.

721 citations

Journal ArticleDOI
TL;DR: In this paper, the authors introduced oxygen defects into single-crystalline ultrathin Co3O4 nanosheets with O-terminated {111} facets by mild solvothermal reduction using ethylene glycol under alkaline condition.
Abstract: The role of vacancy defects is demonstrated to be positive in various energy-related processes. However, introducing vacancy defects into single-crystalline nanostructures with given facets and studying their defect effect on electrocatalytic properties remains a great challenge. Here this study deliberately introduces oxygen defects into single-crystalline ultrathin Co3O4 nanosheets with O-terminated {111} facets by mild solvothermal reduction using ethylene glycol under alkaline condition. As-prepared defect-rich Co3O4 nanosheets show a low overpotential of 220 mV with a small Tafel slope of 49.1 mV dec−1 for the oxygen evolution reaction (OER), which is among the best Co-based OER catalysts to date and even more active than the state-of-the-art IrO2 catalyst. Such vacancy defects are formed by balancing with reducing environments under solvothermal conditions, but are surprisingly stable even after 1000 cycles of scanning under OER working conditions. Density functional theory plus U calculation attributes the enhanced performance to the oxygen vacancies and consequently exposed second-layered Co metal sites, which leads to the lowered OER activation energy of 2.26 eV and improved electrical conductivity. This mild solvothermal reduction concept opens a new door for the understanding and future designing of advanced defect-based electrocatalysts.

415 citations

Journal ArticleDOI
TL;DR: It is disclosed that the isolated single atom ruthenium was kept under the oxidation states of 4+ even at high overpotential due to synergetic electron coupling, which endow exceptional electrocatalytic activity and stability simultaneously.
Abstract: Single atom catalyst, which contains isolated metal atoms singly dispersed on supports, has great potential for achieving high activity and selectivity in hetero-catalysis and electrocatalysis. However, the activity and stability of single atoms and their interaction with support still remains a mystery. Here we show a stable single atomic ruthenium catalyst anchoring on the surface of cobalt iron layered double hydroxides, which possesses a strong electronic coupling between ruthenium and layered double hydroxides. With 0.45 wt.% ruthenium loading, the catalyst exhibits outstanding activity with overpotential 198 mV at the current density of 10 mA cm−2 and a small Tafel slope of 39 mV dec−1 for oxygen evolution reaction. By using operando X-ray absorption spectroscopy, it is disclosed that the isolated single atom ruthenium was kept under the oxidation states of 4+ even at high overpotential due to synergetic electron coupling, which endow exceptional electrocatalytic activity and stability simultaneously. While water splitting offers a carbon-neutral means to store energy, water oxidation is sluggish and corrosive over earth-abundant electrocatalysts. Here, authors show single ruthenium atoms over cobalt-iron layered double hydroxides to be effective and stable oxygen evolution electrocatalysts.

411 citations

Journal ArticleDOI
TL;DR: A hierarchical anode consisting of a nickel–iron hydroxide electrocatalyst layer uniformly coated on a sulfide layer formed on Ni substrate was developed, affording superior catalytic activity and corrosion resistance in seawater electrolysis.
Abstract: Electrolysis of water to generate hydrogen fuel is an attractive renewable energy storage technology. However, grid-scale freshwater electrolysis would put a heavy strain on vital water resources. Developing cheap electrocatalysts and electrodes that can sustain seawater splitting without chloride corrosion could address the water scarcity issue. Here we present a multilayer anode consisting of a nickel–iron hydroxide (NiFe) electrocatalyst layer uniformly coated on a nickel sulfide (NiSx) layer formed on porous Ni foam (NiFe/NiSx-Ni), affording superior catalytic activity and corrosion resistance in solar-driven alkaline seawater electrolysis operating at industrially required current densities (0.4 to 1 A/cm2) over 1,000 h. A continuous, highly oxygen evolution reaction-active NiFe electrocatalyst layer drawing anodic currents toward water oxidation and an in situ-generated polyatomic sulfate and carbonate-rich passivating layers formed in the anode are responsible for chloride repelling and superior corrosion resistance of the salty-water-splitting anode.

399 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The unique advances on ultrathin 2D nanomaterials are introduced, followed by the description of their composition and crystal structures, and the assortments of their synthetic methods are summarized.
Abstract: Since the discovery of mechanically exfoliated graphene in 2004, research on ultrathin two-dimensional (2D) nanomaterials has grown exponentially in the fields of condensed matter physics, material science, chemistry, and nanotechnology. Highlighting their compelling physical, chemical, electronic, and optical properties, as well as their various potential applications, in this Review, we summarize the state-of-art progress on the ultrathin 2D nanomaterials with a particular emphasis on their recent advances. First, we introduce the unique advances on ultrathin 2D nanomaterials, followed by the description of their composition and crystal structures. The assortments of their synthetic methods are then summarized, including insights on their advantages and limitations, alongside some recommendations on suitable characterization techniques. We also discuss in detail the utilization of these ultrathin 2D nanomaterials for wide ranges of potential applications among the electronics/optoelectronics, electrocat...

3,628 citations

Journal ArticleDOI
11 Jan 2017
TL;DR: In this article, the authors investigate progress towards photo-electrocatalytic water-splitting systems, with special emphasis on how they might be incorporated into photoelectrocaralyst systems.
Abstract: Sunlight is by far the most plentiful renewable energy resource, providing Earth with enough power to meet all of humanity's needs several hundred times over. However, it is both diffuse and intermittent, which presents problems regarding how best to harvest this energy and store it for times when the sun is not shining. Devices that use sunlight to split water into hydrogen and oxygen could be one solution to these problems, because hydrogen is an excellent fuel. However, if such devices are to become widely adopted, they must be cheap to produce and operate. Therefore, the development of electrocatalysts for water splitting that comprise only inexpensive, earth-abundant elements is critical. In this Review, we investigate progress towards such electrocatalysts, with special emphasis on how they might be incorporated into photoelectrocatalytic water-splitting systems and the challenges that remain in developing these devices. Splitting water is an attractive means by which energy — either electrical and/or light — is stored and consumed on demand. Active and efficient catalysts for anodic and cathodic reactions often require precious metals. This Review covers base-metal catalysts that can afford high performance in a more sustainable and available manner.

2,369 citations

Journal ArticleDOI
26 Sep 2014-Science
TL;DR: It is shown that a pair of perovskite cells connected in series can power the electrochemical breakdown of water into hydrogen and oxygen efficiently, and the combination of the two yields a water-splitting photocurrent density and a solar-to-hydrogen efficiency of 12.3%.
Abstract: Although sunlight-driven water splitting is a promising route to sustainable hydrogen fuel production, widespread implementation is hampered by the expense of the necessary photovoltaic and photoelectrochemical apparatus. Here, we describe a highly efficient and low-cost water-splitting cell combining a state-of-the-art solution-processed perovskite tandem solar cell and a bifunctional Earth-abundant catalyst. The catalyst electrode, a NiFe layered double hydroxide, exhibits high activity toward both the oxygen and hydrogen evolution reactions in alkaline electrolyte. The combination of the two yields a water-splitting photocurrent density of around 10 milliamperes per square centimeter, corresponding to a solar-to-hydrogen efficiency of 12.3%. Currently, the perovskite instability limits the cell lifetime.

2,140 citations

Journal ArticleDOI
TL;DR: Detailed kinetic analyses of aqueous electrochemistry involving gaseous H2 or O2 involving hydrogen evolution reaction, hydrogen oxidation reaction, oxygen reduction reaction, and oxygen evolution reaction are revisited and the limitation of Butler-Volmer expression in electrocatalysis is discussed.
Abstract: Microkinetic analyses of aqueous electrochemistry involving gaseous H2 or O2, i.e., hydrogen evolution reaction (HER), hydrogen oxidation reaction (HOR), oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), are revisited. The Tafel slopes used to evaluate the rate determining steps generally assume extreme coverage of the adsorbed species (θ ≈ 0 or ≈1), although, in practice, the slopes are coverage-dependent. We conducted detailed kinetic analyses describing the coverage-dependent Tafel slopes for the aforementioned reactions. Our careful analyses provide a general benchmark for experimentally observed Tafel slopes that can be assigned to specific rate determining steps. The Tafel analysis is a powerful tool for discussing the rate determining steps involved in electrocatalysis, but our study also demonstrated that overly simplified assumptions led to an inaccurate description of the surface electrocatalysis. Additionally, in many studies, Tafel analyses have been performed in conjunction with the Butler-Volmer equation, where its applicability regarding only electron transfer kinetics is often overlooked. Based on the derived kinetic description of the HER/HOR as an example, the limitation of Butler-Volmer expression in electrocatalysis is also discussed in this report.

1,830 citations

Journal ArticleDOI
TL;DR: In this article, the hydrogen (H2) and oxygen (O2) fuel cell is the one with zero carbon emission and water as the only byproduct, which is essential to ensure higher life cycle and less decay in cell efficiency.
Abstract: Increasing demand for finding eco-friendly and everlasting energy sources is now totally depending on fuel cell technology. Though it is an eco-friendly way of producing energy for the urgent requirements, it needs to be improved to make it cheaper and more eco-friendly. Although there are several types of fuel cells, the hydrogen (H2) and oxygen (O2) fuel cell is the one with zero carbon emission and water as the only byproduct. However, supplying fuels in the purest form (at least the H2) is essential to ensure higher life cycles and less decay in cell efficiency. The current large-scale H2 production is largely dependent on steam reforming of fossil fuels, which generates CO2 along with H2 and the source of which is going to be depleted. As an alternate, electrolysis of water has been given greater attention than the steam reforming. The reasons are as follows: the very high purity of the H2 produced, the abundant source, no need for high-temperature, high-pressure reactors, and so on. In earlier days,...

1,757 citations