scispace - formally typeset
Search or ask a question
Author

Yaqian Cheng

Bio: Yaqian Cheng is an academic researcher from Chang'an University. The author has contributed to research in topics: Geopolymer. The author has an hindex of 1, co-authored 1 publications receiving 7 citations.
Topics: Geopolymer

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the shortcomings and application limitations of geopolymer materials were summarized, and their progress was summarized to lay a theoretical foundation for the long-term development of the materials.
Abstract: Geopolymer is a new environment-friendly cementitious material, and the development of geopolymer can reduce the carbon dioxide emission caused by the development of cement industry. Geopolymer materials not only have excellent mechanical properties, but also have a series of excellent properties such as fire resistance and corrosion resistance. Most industrial solid waste and waste incineration bottom ash are piled up at will, which not only occupies land resources, but also has a bad impact on the environment. Recycling them can be used as raw materials for preparing geopolymers. Geopolymer materials can effectively adsorb heavy metals, dyes, and other radioactive pollution, which is very beneficial to society's future development. However, due to the excellent properties of geopolymer materials, its application goes beyond that. Some useful information about geopolymer materials was introduced in this paper. The paper included the geopolymerization, the source of raw materials, the types of activators, the preparation methods, and the different application fields of geopolymer materials. The factors affecting the fresh properties and mechanical properties of geopolymer materials were discussed. In this paper, the shortcomings and application limitations of geopolymer materials were summarized, and their progress was summarized to lay a theoretical foundation for the long-term development of geopolymer materials.

111 citations


Cited by
More filters
Peer ReviewDOI
TL;DR: In this paper , a comprehensive survey of the literature shows that sustainable development is achieved by employing geopolymers in Indian construction industries, because it results in lower CO2 emissions, optimum utilization of natural resources, utilization of waste materials, is more cost-effective in long life infrastructure construction, and, socially, in financial benefits and employment generation.
Abstract: Geopolymer concrete (GPC) is a new material in the construction industry, with different chemical compositions and reactions involved in a binding material. The pozzolanic materials (industrial waste like fly ash, ground granulated blast furnace slag (GGBFS), and rice husk ash), which contain high silica and alumina, work as binding materials in the mix. Geopolymer concrete is economical, low energy consumption, thermally stable, easily workable, eco-friendly, cementless, and durable. GPC reduces carbon footprints by using industrial solid waste like slag, fly ash, and rice husk ash. Around one tonne of carbon dioxide emissions produced one tonne of cement that directly polluted the environment and increased the world’s temperature by increasing greenhouse gas production. For sustainable construction, GPC reduces the use of cement and finds the alternative of cement for the material’s binding property. So, the geopolymer concrete is an alternative to Portland cement concrete and it is a potential material having large commercial value and for sustainable development in Indian construction industries. The comprehensive survey of the literature shows that geopolymer concrete is a perfect alternative to Portland cement concrete because it has better physical, mechanical, and durable properties. Geopolymer concrete is highly resistant to acid, sulphate, and salt attack. Geopolymer concrete plays a vital role in the construction industry through its use in bridge construction, high-rise buildings, highways, tunnels, dams, and hydraulic structures, because of its high performance. It can be concluded from the review that sustainable development is achieved by employing geopolymers in Indian construction industries, because it results in lower CO2 emissions, optimum utilization of natural resources, utilization of waste materials, is more cost-effective in long life infrastructure construction, and, socially, in financial benefits and employment generation.

26 citations

Journal ArticleDOI
TL;DR: Wang et al. as discussed by the authors synthesized a geopolymer with SFA, metakaolin (MK), and steel slag (SS) to solidify and stabilize heavy metals (Pb, Cr, and Zn) and investigated the early immobilization mechanisms.

24 citations

Journal ArticleDOI
TL;DR: In this article , the authors comprehensively review the rheological, strength and durability properties of inorganic geopolymer composites, along with shedding light on their recent key advancements.
Abstract: The discovery of an innovative category of inorganic geopolymer composites has generated extensive scientific attention and the kaleidoscopic development of their applications. The escalating concerns over global warming owing to emissions of carbon dioxide (CO2), a primary greenhouse gas, from the ordinary Portland cement industry, may hopefully be mitigated by the development of geopolymer construction composites with a lower carbon footprint. The current manuscript comprehensively reviews the rheological, strength and durability properties of geopolymer composites, along with shedding light on their recent key advancements viz., micro-structures, state-of-the-art applications such as the immobilization of toxic or radioactive wastes, digital geopolymer concrete, 3D-printed fly ash-based geopolymers, hot-pressed and foam geopolymers, etc. They have a crystal-clear role to play in offering a sustainable prospect to the construction industry, as part of the accessible toolkit of building materials—binders, cements, mortars, concretes, etc. Consequently, the present scientometric review manuscript is grist for the mill and aims to contribute as a single key note document assessing exhaustive research findings for establishing the viability of fly ash-based geopolymer composites as the most promising, durable, sustainable, affordable, user and eco-benevolent building materials for the future.

18 citations

Journal ArticleDOI
TL;DR: In this article , the state-of-the-art for research on one-part alkali-activated materials is assessed, with particular emphasis on recent work dealing with the constituent materials, preparation methods, fresh properties, mechanical properties, and durability characteristics.
Abstract: This article assesses the state-of-the-art for research on one-part alkali-activated materials, with particular emphasis on recent work dealing with the constituent materials, preparation methods, fresh properties, mechanical properties, and durability characteristics. The review, which covers over 170 studies, first discusses the different precursors, solid activators, admixtures, and aggregates used within such materials. Preparation techniques of one-part alkali-activated materials are then addressed, including pre-mixing treatment, mixing and curing, and 3D-printing. Reaction mechanisms and resulting binding phases are also outlined, followed by a detailed discussion on the fresh, mechanical and durability characteristics. The sensitivity of the compressive strength to different precursors and solid activators with varying chemical compositions, is examined, and predictive strength equations are proposed for common mixes. A brief comparison between the fresh, mechanical and durability characteristics of one-part and two-part AAMs is outlined, followed by a discussion on design standards as well as health and environmental aspects. The review concludes with suggestions for future research for key applications, with due consideration to the projected availability of precursors and the sustainability of solid activators. It is shown that despite the significant recent developments on one-part alkali-activated materials, further progress necessitates future research with a focus on optimising mixes made from precursors other than fly ash and blast furnace slag, as well as detailed investigations on structural members and components.

18 citations