scispace - formally typeset
Search or ask a question
Author

Yassin A. Hassan

Bio: Yassin A. Hassan is an academic researcher from Texas A&M University. The author has contributed to research in topics: Turbulence & Particle image velocimetry. The author has an hindex of 32, co-authored 371 publications receiving 4467 citations. Previous affiliations of Yassin A. Hassan include University of Illinois at Urbana–Champaign & University of Texas at Austin.


Papers
More filters
Journal ArticleDOI
TL;DR: A two-fluid model of turbulent, adiabatic bubbly flow was implemented in the computational fluid dynamics (CFD) CFX4.2 program and validated.

320 citations

Journal ArticleDOI
TL;DR: The strategy is to couple various interface schemes, which were adopted in the previous direct‐forcing immersed boundary methods (IBM), with the split‐forcing LBE, which enables us to directly use the direct‐ forcing concept in the lattice Boltzmann calculation algorithm with a second‐order accuracy without involving the Navier–Stokes equation.
Abstract: In this study, we assess several interface schemes for stationary complex boundary flows under the direct-forcing immersed boundary-lattice Boltzmann methods (IB-LBM) based on a split-forcing lattice Boltzmann equation (LBE). Our strategy is to couple various interface schemes, which were adopted in the previous direct-forcing immersed boundary methods (IBM), with the split-forcing LBE, which enables us to directly use the direct-forcing concept in the lattice Boltzmann calculation algorithm with a second-order accuracy without involving the Navier–Stokes equation. In this study, we investigate not only common diffuse interface schemes but also a sharp interface scheme. For the diffuse interface scheme, we consider explicit and implicit interface schemes. In the calculation of velocity interpolation and force distribution, we use the 2- and 4-point discrete delta functions, which give the second-order approximation. For the sharp interface scheme, we deal with the exterior sharp interface scheme, where we impose the force density on exterior (solid) nodes nearest to the boundary. All tested schemes show a second-order overall accuracy when the simulation results of the Taylor–Green decaying vortex are compared with the analytical solutions. It is also confirmed that for stationary complex boundary flows, the sharper the interface scheme, the more accurate the results are. In the simulation of flows past a circular cylinder, the results from each interface scheme are comparable to those from other corresponding numerical schemes. Copyright © 2010 John Wiley & Sons, Ltd.

196 citations

Journal ArticleDOI
TL;DR: In this paper, the full velocity field using particle image velocimetry technique (PIV) in a conjunction with matched refractive index fluid with the pebbles to achieve optical access is presented.

155 citations

Journal ArticleDOI
TL;DR: This study shows that the biomechanics of a human sneeze, including complex muscle contractions and relaxations, can be accurately modeled by the angular head motion and the dynamic pressure response during sneezing.
Abstract: The novel coronavirus disease (COVID-19) spread pattern continues to show that geographical barriers alone cannot contain a virus. Asymptomatic carriers play a critical role in the nature of this virus quickly escalating into a global pandemic. Asymptomatic carriers may transmit the virus unintentionally through sporadic sneezing. A novel Computational Fluid Dynamics (CFD) approach has been proposed with a realistic modeling of a human sneeze achieved by the combination of state-of-the-art experimental and numerical methods. This modeling approach may be suitable for future engineering analyses aimed at reshaping public spaces and common areas, with the main objective to accurately predict the spread of aerosol and droplets that may contain pathogens. This study shows that the biomechanics of a human sneeze, including complex muscle contractions and relaxations, can be accurately modeled by the angular head motion and the dynamic pressure response during sneezing. These have been considered as the human factors and were implemented in the CFD simulation by imposing a momentum source term to the coupled Eulerian–Lagrangian momentum equations. The momentum source was modeled by the measured dynamic pressure response in conjunction with the angular head motion. This approach eliminated the need to create an ad hoc set of inlet boundary conditions. With this proposed technique, it is easier to add multiple fixed and/or moving sources of sneezes in complex computational domains. Additionally, extensive sensitivity analyses based on different environmental conditions were performed, and their impact was described in terms of potential virus spread.

147 citations

Journal ArticleDOI
TL;DR: In this paper, a two-phase dispersed air bubble mixing flow within a rectangular vessel is examined using particle image velocimetry (PIV) to obtain non-invasive velocity measurements of the resulting bubble flow field and its induced effects upon a surrounding liquid medium.

135 citations


Cited by
More filters
01 Jan 2007

1,932 citations

Journal ArticleDOI
TL;DR: The development of the method of particle image velocimetry (PIV) is traced by describing some of the milestones that have enabled new and/or better measurements to be made.
Abstract: The development of the method of particle image velocimetry (PIV) is traced by describing some of the milestones that have enabled new and/or better measurements to be made. The current status of PIV is summarized, and some goals for future advances are addressed.

1,284 citations

Journal ArticleDOI
TL;DR: The size specifications for suitable tracer particles for particle image velocimetry (PIV), particularly with respect to their flow tracking capability, are discussed and quantified for several examples.
Abstract: The size specifications for suitable tracer particles for particle image velocimetry (PIV), particularly with respect to their flow tracking capability, are discussed and quantified for several examples. A review of a wide variety of tracer materials used in recent PIV experiments in liquids and gases indicates that appropriately sized particles have normally been used. With emphasis on gas flows, methods of generating seeding particles and for introducing the particles into the flow are described and their advantages are discussed.

1,122 citations

01 Jan 1992
TL;DR: In this article, cross-correlation methods of interrogation of successive single-exposure frames can be used to measure the separation of pairs of particle images between successive frames, which can be optimized in terms of spatial resolution, detection rate, accuracy and reliability.
Abstract: To improve the performance of particle image velocimetry in measuring instantaneous velocity fields, direct cross-correlation of image fields can be used in place of auto-correlation methods of interrogation of double- or multiple-exposure recordings. With improved speed of photographic recording and increased resolution of video array detectors, cross-correlation methods of interrogation of successive single-exposure frames can be used to measure the separation of pairs of particle images between successive frames. By knowing the extent of image shifting used in a multiple-exposure and by a priori knowledge of the mean flow-field, the cross-correlation of different sized interrogation spots with known separation can be optimized in terms of spatial resolution, detection rate, accuracy and reliability.

1,101 citations

Journal ArticleDOI
TL;DR: Very large-scale motions in the form of long regions of streamwise velocity fluctuation are observed in the outer layer of fully developed turbulent pipe flow over a range of Reynolds numbers.
Abstract: Very large-scale motions in the form of long regions of streamwise velocity fluctuation are observed in the outer layer of fully developed turbulent pipe flow over a range of Reynolds numbers. The premultiplied, one-dimensional spectrum of the streamwise velocity measured by hot-film anemometry has a bimodal distribution whose components are associated with large-scale motion and a range of smaller scales corresponding to the main turbulent motion. The characteristic wavelength of the large-scale mode increases through the logarithmic layer, and reaches a maximum value that is approximately 12–14 times the pipe radius, one order of magnitude longer than the largest reported integral length scale, and more than four to five times longer than the length of a turbulent bulge. The wavelength decreases to approximately two pipe radii at the pipe centerline. It is conjectured that the very large-scale motions result from the coherent alignment of large-scale motions in the form of turbulent bulges or packets of...

853 citations