scispace - formally typeset
Search or ask a question
Author

Yassine Maazouz

Other affiliations: University of Minnesota
Bio: Yassine Maazouz is an academic researcher from Polytechnic University of Catalonia. The author has contributed to research in topics: Bone regeneration & Mathematics. The author has an hindex of 9, co-authored 20 publications receiving 442 citations. Previous affiliations of Yassine Maazouz include University of Minnesota.

Papers
More filters
Journal ArticleDOI
TL;DR: This study demonstrates that the high reactivity of nanostructured biomimetic CDHA combined with a spherical, concave macroporosity allows the pushing of the osteoinduction potential beyond the limits of microstructured calcium phosphate ceramics.
Abstract: Some biomaterials are osteoinductive, that is, they are able to trigger the osteogenic process by inducing the differentiation of mesenchymal stem cells to the osteogenic lineage. Although the underlying mechanism is still unclear, microporosity and specific surface area (SSA) have been identified as critical factors in material-associated osteoinduction. However, only sintered ceramics, which have a limited range of porosities and SSA, have been analyzed so far. In this work, we were able to extend these ranges to the nanoscale, through the foaming and 3D-printing of biomimetic calcium phosphates, thereby obtaining scaffolds with controlled micro- and nanoporosity and with tailored macropore architectures. Calcium-deficient hydroxyapatite (CDHA) scaffolds were evaluated after 6 and 12 weeks in an ectopic-implantation canine model and compared with two sintered ceramics, biphasic calcium phosphate and β-tricalcium phosphate. Only foams with spherical, concave macropores and not 3D-printed scaffolds with c...

143 citations

Journal ArticleDOI
21 May 2018
TL;DR: Advanced technologies open up new possibilities in the design of bioceramics for bone regeneration; 3D-printing technologies, in combination with the development of hybrid materials with enhanced mechanical properties, supported by finite element modelling tools are expected to enable the design and fabrication of mechanically competent patient-specific bone grafts.
Abstract: Calcium phosphates have long been used as synthetic bone grafts. Recent studies have shown that the modulation of composition and textural properties, such as nano-, micro- and macro-porosity, is a...

93 citations

Journal ArticleDOI
TL;DR: This work deals with the robocasting of alpha-tricalcium phosphate/gelatine reactive slurries as a bioinspired self-setting ink for the production of biomimetic hydroxyapatite/ gelatine scaffolds for bone tissue engineering with enhanced reactivity and resorption rate.
Abstract: Low temperature self-setting ceramic inks have been scarcely investigated for solid freeform fabrication processes This work deals with the robocasting of alpha-tricalcium phosphate/gelatine reactive slurries as a bioinspired self-setting ink for the production of biomimetic hydroxyapatite/gelatine scaffolds A controlled and totally interconnected pore network of ∼300 μm was obtained after ink printing and setting, with the struts consisting of a micro/nanoporous matrix of needle-shaped calcium deficient hydroxyapatite crystals, with a high specific surface area Gelatine was effectively retained by chemical crosslinking The setting reaction of the ink resulted in a significant increase of both the elastic modulus and the compressive strength of the scaffolds, which were within the range of the human trabecular bone In addition to delaying the onset of the setting reaction, thus providing enough time for printing, gelatine provided the viscoelastic properties to the strands to support their own weight, and additionally enhanced mesenchymal stem cell adhesion and proliferation on the surface of the scaffold Altogether this new processing approach opens good perspectives for the design of hydroxyapatite scaffolds for bone tissue engineering with enhanced reactivity and resorption rate

92 citations

Journal ArticleDOI
TL;DR: It is demonstrated that the spherical, concave macropores of foamed scaffolds significantly promoted both material resorption and bone regeneration compared to the 3D-printed scaffolds with orthogonal-patterned struts and therefore prismatic, convex Macropores.

87 citations

Journal ArticleDOI
TL;DR: Whereas powder calcination resulted in an increased injectability due to lower particle reactivity, the addition of setting accelerants, such as hydroxyapatite nanoparticles, tended to reduce the injectability of the TCP pastes, especially if adjoined simultaneously with a Na2HPO4 solution.

70 citations


Cited by
More filters
Journal ArticleDOI

1,073 citations

Journal ArticleDOI
TL;DR: This review provides a brief overview of current progress in existing biomaterials and tissue engineering scaffolds prepared by 3D printing technologies, with an emphasis on the material selection, scaffold design optimization, and their preclinical and clinical applications in the repair of critical-sized bone defects.

469 citations

Journal ArticleDOI
TL;DR: Calcium phosphate has been utilized to improve bone regeneration in ways such as increasing osteoconductivity for bone ingrowth, enhancing osteoinductivity in combination with various healing agents, and encapsulating drugs or growth factors.
Abstract: Bone regeneration involves various complex biological processes. Many experiments have been performed using biomaterials in vivo and in vitro to promote and understand bone regeneration. Among the many biomaterials, calcium phosphates which exist in the natural bone have been conducted a number of studies because of its bone regenerative property. It can be directly contributed to bone regeneration process or assist in the use of other biomaterials. Therefore, it is widely used in many applications and has been continuously studied. Calcium phosphate has been widely used in bone regeneration applications because it shows osteoconductive and in some cases osteoinductive features. The release of calcium and phosphorus ions regulates the activation of osteoblasts and osteoclasts to facilitate bone regeneration. The control of surface properties and porosity of calcium phosphate affects cell/protein adhesion and growth and regulates bone mineral formation. Properties affecting bioactivity vary depending on the types of calcium phosphates such as HAP, TCP and can be utilized in various applications because of differences in ion release, solubility, stability, and mechanical strength. In order to make use of these properties, different calcium phosphates have been used together or mixed with other materials to complement their disadvantages and to highlight their advantages. Calcium phosphate has been utilized to improve bone regeneration in ways such as increasing osteoconductivity for bone ingrowth, enhancing osteoinductivity for bone mineralization with ion release control, and encapsulating drugs or growth factors. Calcium phosphate has been used for bone regeneration in various forms such as coating, cement and scaffold based on its unique bioactive properties and bone regeneration effectiveness. Additionally, several studies have been actively carried out to improve the efficacy of calcium phosphate in combination with various healing agents. By summarizing the properties of calcium phosphate and its research direction, we hope that calcium phosphate can contribute to the clinical treatment approach for bone defect and disease.

464 citations

Journal ArticleDOI
TL;DR: The physicochemical parameters influencing shape fidelity are discussed, together with their importance in establishing new models, predictive tools and printing methods that are deemed instrumental for the design of next-generation bioinks, and for reproducible comparison of their structural performance.
Abstract: Three-dimensional bioprinting uses additive manufacturing techniques for the automated fabrication of hierarchically organized living constructs. The building blocks are often hydrogel-based bioinks, which need to be printed into structures with high shape fidelity to the intended computer-aided design. For optimal cell performance, relatively soft and printable inks are preferred, although these undergo significant deformation during the printing process, which may impair shape fidelity. While the concept of good or poor printability seems rather intuitive, its quantitative definition lacks consensus and depends on multiple rheological and chemical parameters of the ink. This review discusses qualitative and quantitative methodologies to evaluate printability of bioinks for extrusion- and lithography-based bioprinting. The physicochemical parameters influencing shape fidelity are discussed, together with their importance in establishing new models, predictive tools and printing methods that are deemed instrumental for the design of next-generation bioinks, and for reproducible comparison of their structural performance.

399 citations