scispace - formally typeset
Search or ask a question
Author

Yasuo Terauchi

Bio: Yasuo Terauchi is an academic researcher from Yokohama City University. The author has contributed to research in topics: Type 2 diabetes & Diabetes mellitus. The author has an hindex of 67, co-authored 382 publications receiving 29461 citations. Previous affiliations of Yasuo Terauchi include Texas A&M University & University of Tokyo.


Papers
More filters
Journal ArticleDOI
TL;DR: It is concluded that decreased adiponectin is implicated in the development of insulin resistance in mouse models of both obesity and lipoatrophy and that the replenishment of adiponECTin might provide a novel treatment modality for insulin resistance and type 2 diabetes.
Abstract: Adiponectin is an adipocyte-derived hormone. Recent genome-wide scans have mapped a susceptibility locus for type 2 diabetes and metabolic syndrome to chromosome 3q27, where the gene encoding adiponectin is located. Here we show that decreased expression of adiponectin correlates with insulin resistance in mouse models of altered insulin sensitivity. Adiponectin decreases insulin resistance by decreasing triglyceride content in muscle and liver in obese mice. This effect results from increased expression of molecules involved in both fatty-acid combustion and energy dissipation in muscle. Moreover, insulin resistance in lipoatrophic mice was completely reversed by the combination of physiological doses of adiponectin and leptin, but only partially by either adiponectin or leptin alone. We conclude that decreased adiponectin is implicated in the development of insulin resistance in mouse models of both obesity and lipoatrophy. These data also indicate that the replenishment of adiponectin might provide a novel treatment modality for insulin resistance and type 2 diabetes.

4,845 citations

Journal ArticleDOI
12 Jun 2003-Nature
TL;DR: The cloning of complementary DNAs encoding adiponectin receptors 1 and 2 by expression cloning supports the conclusion that they serve as receptors for globular and full-length adiponECTin, and that they mediate increased AMP kinase and PPAR-α ligand activities, as well as fatty-acid oxidation and glucose uptake by adiponectionin.
Abstract: Adiponectin (also known as 30-kDa adipocyte complement-related protein; Acrp30) is a hormone secreted by adipocytes that acts as an antidiabetic and anti-atherogenic adipokine. Levels of adiponectin in the blood are decreased under conditions of obesity, insulin resistance and type 2 diabetes. Administration of adiponectin causes glucose-lowering effects and ameliorates insulin resistance in mice. Conversely, adiponectin-deficient mice exhibit insulin resistance and diabetes. This insulin-sensitizing effect of adiponectin seems to be mediated by an increase in fatty-acid oxidation through activation of AMP kinase and PPAR-alpha. Here we report the cloning of complementary DNAs encoding adiponectin receptors 1 and 2 (AdipoR1 and AdipoR2) by expression cloning. AdipoR1 is abundantly expressed in skeletal muscle, whereas AdipoR2 is predominantly expressed in the liver. These two adiponectin receptors are predicted to contain seven transmembrane domains, but to be structurally and functionally distinct from G-protein-coupled receptors. Expression of AdipoR1/R2 or suppression of AdipoR1/R2 expression by small-interfering RNA supports our conclusion that they serve as receptors for globular and full-length adiponectin, and that they mediate increased AMP kinase and PPAR-alpha ligand activities, as well as fatty-acid oxidation and glucose uptake by adiponectin.

3,013 citations

Journal ArticleDOI
TL;DR: This study provides the first direct evidence that adiponectin plays a protective role against insulin resistance and atherosclerosis in vivo.

1,376 citations

Journal ArticleDOI
10 Nov 1994-Nature
TL;DR: The data suggest that mice homozygous for targeted disruption of the IRS-1 gene were born alive but were retarded in embryonal and postnatal growth and the exis-tence of both IRS- 1-dependent and IRS-2-independent pathways for signal transduction of insulin and IGFs is suggested.
Abstract: INSULIN receptor substrate-1 (IRS-1) is the major substrate of insulin receptor and IGF-1 receptor tyrosine kinases; it has an apparent relative molecular mass of 160–190,000 (Mr, 160–190K) on SDS polyacrylamide gel1–3. Tyrosine-phosphorylated IRS-1 binds the 85K subunit of phosphatidylinositol 3-kinase4,5 which may be involved in the translocation of glucose transporters6,7 and the abundant src homology protein (ASH)/Grb28,9 which may be involved in activation of p2lras and MAP kinase cascade10. IRS-1 also has binding sites for Syp11 and Nck12 and other src homology 2 (SH2) signalling molecules10. To clarify the physiological roles of IRS-1 in vivo, we made mice with a targeted disruption of the IRS-1 gene locus. Mice homozygous for targeted disruption of the IRS-1 gene were born alive but were retarded in embryonal and postnatal growth. They also had resistance to the glucose-lowering effects of insulin, IGF-1 and IGF-2. These data suggest the exis-tence of both IRS-1-dependent and IRS-1-independent pathways for signal transduction of insulin and IGFs.

1,050 citations


Cited by
More filters
01 Jan 2014
TL;DR: These standards of care are intended to provide clinicians, patients, researchers, payors, and other interested individuals with the components of diabetes care, treatment goals, and tools to evaluate the quality of care.
Abstract: XI. STRATEGIES FOR IMPROVING DIABETES CARE D iabetes is a chronic illness that requires continuing medical care and patient self-management education to prevent acute complications and to reduce the risk of long-term complications. Diabetes care is complex and requires that many issues, beyond glycemic control, be addressed. A large body of evidence exists that supports a range of interventions to improve diabetes outcomes. These standards of care are intended to provide clinicians, patients, researchers, payors, and other interested individuals with the components of diabetes care, treatment goals, and tools to evaluate the quality of care. While individual preferences, comorbidities, and other patient factors may require modification of goals, targets that are desirable for most patients with diabetes are provided. These standards are not intended to preclude more extensive evaluation and management of the patient by other specialists as needed. For more detailed information, refer to Bode (Ed.): Medical Management of Type 1 Diabetes (1), Burant (Ed): Medical Management of Type 2 Diabetes (2), and Klingensmith (Ed): Intensive Diabetes Management (3). The recommendations included are diagnostic and therapeutic actions that are known or believed to favorably affect health outcomes of patients with diabetes. A grading system (Table 1), developed by the American Diabetes Association (ADA) and modeled after existing methods, was utilized to clarify and codify the evidence that forms the basis for the recommendations. The level of evidence that supports each recommendation is listed after each recommendation using the letters A, B, C, or E.

9,618 citations

Journal ArticleDOI
TL;DR: Rapid progress that has recently improved the understanding of the molecular mechanisms that mediate TLR signalling is reviewed.
Abstract: One of the mechanisms by which the innate immune system senses the invasion of pathogenic microorganisms is through the Toll-like receptors (TLRs), which recognize specific molecular patterns that are present in microbial components. Stimulation of different TLRs induces distinct patterns of gene expression, which not only leads to the activation of innate immunity but also instructs the development of antigen-specific acquired immunity. Here, we review the rapid progress that has recently improved our understanding of the molecular mechanisms that mediate TLR signalling.

7,906 citations

Journal ArticleDOI
TL;DR: The pathophysiology seems to be largely attributable to insulin resistance with excessive flux of fatty acids implicated, and a proinflammatory state probably contributes to the metabolic syndrome.

5,810 citations

Journal ArticleDOI
TL;DR: Small-molecule therapeutics that block PI3K signalling might deal a severe blow to cancer cells by blocking many aspects of the tumour-cell phenotype.
Abstract: One signal that is overactivated in a wide range of tumour types is the production of a phospholipid, phosphatidylinositol (3,4,5) trisphosphate, by phosphatidylinositol 3-kinase (PI3K) This lipid and the protein kinase that is activated by it — AKT — trigger a cascade of responses, from cell growth and proliferation to survival and motility, that drive tumour progression Small-molecule therapeutics that block PI3K signalling might deal a severe blow to cancer cells by blocking many aspects of the tumour-cell phenotype

5,654 citations

Journal ArticleDOI
TL;DR: An overview of the endocrine functions of adipose tissue can be found in this paper, where the authors highlight the adverse metabolic consequences of both adipose excess and deficiency, and propose a more rational therapy for these increasingly prevalent disorders.
Abstract: Adipose tissue is a complex, essential, and highly active metabolic and endocrine organ. Besides adipocytes, adipose tissue contains connective tissue matrix, nerve tissue, stromovascular cells, and immune cells. Together these components function as an integrated unit. Adipose tissue not only responds to afferent signals from traditional hormone systems and the central nervous system but also expresses and secretes factors with important endocrine functions. These factors include leptin, other cytokines, adiponectin, complement components, plasminogen activator inhibitor-1, proteins of the renin-angiotensin system, and resistin. Adipose tissue is also a major site for metabolism of sex steroids and glucocorticoids. The important endocrine function of adipose tissue is emphasized by the adverse metabolic consequences of both adipose tissue excess and deficiency. A better understanding of the endocrine function of adipose tissue will likely lead to more rational therapy for these increasingly prevalent disorders. This review presents an overview of the endocrine functions of adipose tissue.

5,484 citations