scispace - formally typeset
Search or ask a question
Author

Yasuteru Urano

Bio: Yasuteru Urano is an academic researcher from University of Tokyo. The author has contributed to research in topics: Fluorescence & Fluorophore. The author has an hindex of 79, co-authored 356 publications receiving 24884 citations. Previous affiliations of Yasuteru Urano include Tokyo Institute of Technology & National Institutes of Health.


Papers
More filters
Journal ArticleDOI
TL;DR: Although MRI, US, and x-ray CT are often listed as molecular imaging modalities, in truth, radionuclide and optical imaging are the most practical modalities for molecular imaging, because of their sensitivity and the specificity for target detection.
Abstract: In vivo medical imaging has made great progress due to advances in the engineering of imaging devices and developments in the chemistry of imaging probes Several modalities have been utilized for medical imaging, including X-ray radiography and computed tomography (x-ray CT), radionuclide imaging using single photons and positrons, magnetic resonance imaging (MRI), ultrasonography (US), and optical imaging In order to extract more information from imaging, “contrast agents” have been employed For example, organic iodine compounds have been used in X-ray radiography and computed tomography, superparamagnetic or paramagnetic metals have been used in MRI, and microbubbles have been used in ultrasonography Most of these, however, are non-targeted reagents Molecular imaging is widely considered the future for medical imaging Molecular imaging has been defined as the in vivo characterization and measurement of biologic process at the cellular and molecular level1, or more broadly as a technique to directly or indirectly monitor and record the spatio-temporal distribution of molecular or cellular processes for biochemical, biologic, diagnostic, or therapeutic application2 Molecular imaging is the logical next step in the evolution of medical imaging after anatomic imaging (eg x-rays) and functional imaging (eg MRI) In order to attain truly targeted imaging of specific molecules which exist in relatively low concentrations in living tissues, the imaging techniques must be highly sensitive Although MRI, US, and x-ray CT are often listed as molecular imaging modalities, in truth, radionuclide and optical imaging are the most practical modalities, for molecular imaging, because of their sensitivity and the specificity for target detection Radionuclide imaging, including gamma scintigraphy and positron emission tomography (PET), are highly sensitive, quantitative, and offer the potential for whole body scanning However, radionuclide imaging methods have the disadvantages of poor spatial and temporal resolution3 Additionally, they require radioactive compounds which have an intrinsically limited half life, and which expose the patient and practitioner to ionizing radiation and are therefore subject to a variety of stringent safety regulations which limit their repeated use4 Optical imaging, on the other hand, has comparable sensitivity to radionuclide imaging, and can be “targeted” if the emitting fluorophore is conjugated to a targeting ligand3 Optical imaging, by virtue of being “switchable”, can result in very high target to background ratios “Switchable” or activatable optical probes are unique in the field of molecular imaging since these agents can be turned on in specific environments but otherwise remain undetectable This improves the achievable target to background ratios, enabling the detection of small tumors against a dark background5,6 This advantage must be balanced against the lack of quantitation with optical imaging due to unpredictable light scattering and absorption, especially when the object of interest is deep within the tissue Visualization through the skin is limited to superficial tissues such as the breast7-9 or lymph nodes10,11 The fluorescence signal from the bright GFP-expressing tumors can be seen in the deep organ only in the nude mice 12,13 However, optical molecular imaging can also be employed during endoscopy14 or surgery 15,16

1,851 citations

Journal ArticleDOI
TL;DR: Not only can hROS be differentiated from hydrogen peroxide (H2O2), nitric oxide (NO), and superoxide (O 2 ⨪ ) by usingHPF or APF alone, but −OCl can also be specifically detected by using HPF and APF together.

1,142 citations

Journal ArticleDOI
TL;DR: A newly designed targeted 'activatable' fluorescent imaging probe that is highly specific for tumors with minimal background signal and can be widely adapted to cancer-specific, cell surface–targeting molecules that result in cellular internalization.
Abstract: A long-term goal of cancer diagnosis is to develop tumor-imaging techniques that have sufficient specificity and sensitivity. To achieve this goal, minimizing the background signal originating from nontarget tissues is crucial. Here we achieve highly specific in vivo cancer visualization by using a newly designed targeted 'activatable' fluorescent imaging probe. This agent is activated after cellular internalization by sensing the pH change in the lysosome. Novel acidic pH-activatable probes based on the boron-dipyrromethene fluorophore were synthesized and then conjugated to a cancer-targeting monoclonal antibody. As proof of concept, ex vivo and in vivo imaging of human epidermal growth factor receptor type 2-positive lung cancer cells in mice was performed. The probe was highly specific for tumors with minimal background signal. Furthermore, because the acidic pH in lysosomes is maintained by the energy-consuming proton pump, only viable cancer cells were successfully visualized. The design concept can be widely adapted to cancer-specific, cell surface-targeting molecules that result in cellular internalization.

744 citations

Journal ArticleDOI
TL;DR: 2I-BDP shows stronger near-infrared singlet oxygen luminescence emission and higher photostability than the well-known photosensitizer, Rose Bengal, and is potentially useful as a reagent for cell photosensitization, oxidative stress studies, or PDT.
Abstract: Photosensitizers are reagents that produce reactive oxygen species upon light illumination and are commonly used to study oxidative stress or for photodynamic therapy. There are many available photosensitizers, but most have limitations, such as low photostability, structural instability, or a limited usable range of solvent conditions. Here, we describe a novel photosensitizer scaffold (2I-BDP) based on the unique characteristics of the BODIPY chromophore (i.e., high extinction coefficient, high photostability, and insensitivity to solvent environment). 2I-BDP shows stronger near-infrared singlet oxygen luminescence emission and higher photostability than the well-known photosensitizer, Rose Bengal. Unlike other photosensitizers, this scaffold is widely applicable under various conditions, including lipophilic and aqueous environments. HeLa cells loaded with 2I-BDP could be photosensitized by light illumination, demonstrating that 2I-BDP is potentially useful as a reagent for cell photosensitization, oxi...

701 citations

Journal ArticleDOI
TL;DR: The development of DAMBO-P(H), a highly sensitive fluorescence probe for nitric oxide (NO), was developed based on the BODIPY chromophore and the change of the fluorescence intensity was found to be controlled by an intramolecular photoinduced electron transfer (PeT) mechanism.
Abstract: Boron dipyrromethene (BODIPY) is known to have a high quantum yield (phi) of fluorescence in aqueous solution but has not been utilized much for biological applications, compared to fluorescein. We developed 8-(3,4-diaminophenyl)-2,6-bis(2-carboxyethyl)-4,4-difluoro-1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-s-indacene (DAMBO-P(H)), based on the BODIPY chromophore, as a highly sensitive fluorescence probe for nitric oxide (NO). DAMBO-P(H) had a low phi value of 0.002, whereas its triazole derivative (DAMBO-P(H)-T), the product of the reaction of DAMBO-P(H) with NO, fluoresced strongly (phi = 0.74). The change of the fluorescence intensity was found to be controlled by an intramolecular photoinduced electron transfer (PeT) mechanism. The strategy for development of DAMBO-P(H) was as follows: (1) in order to design a highly sensitive probe of NO, the reactivity of o-phenylenediamine derivatives as NO-reactive moieties was examined using 4,5-diaminofluorescein (DAF-2, a widely used NO fluorescence probe), (2) in order to avoid pH-dependency of the fluorescence intensity, the PeT process was controlled by modulating the spectroscopic and electrochemical properties of BODIPY chromophores according to the Rehm-Weller equation based on measurement of excitation energies of chromophores, ground-state reduction potentials of PeT acceptors (BODIPYs), and calculation of the HOMO energy level of the PeT donor (o-phenylenediamine moiety) at the B3LYP/6-31G level, (3) in order to avoid quenching of fluorescence by stacking of the probes and to obtain probes suitable for biological applications, hydrophilic functional groups were introduced. This strategy should be applicable for the rational design of other novel and potentially useful bioimaging fluorescence probes.

610 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Dye-sensitized solar cells (DSCs) offer the possibilities to design solar cells with a large flexibility in shape, color, and transparency as mentioned in this paper, and many DSC research groups have been established around the world.
Abstract: Dye-sensitized solar cells (DSCs) offer the possibilities to design solar cells with a large flexibility in shape, color, and transparency. DSC research groups have been established around the worl ...

8,707 citations

Journal ArticleDOI
TL;DR: Methods available for the measurement of antioxidant capacity are reviewed, presenting the general chemistry underlying the assays, the types of molecules detected, and the most important advantages and shortcomings of each method.
Abstract: Methods available for the measurement of antioxidant capacity are reviewed, presenting the general chemistry underlying the assays, the types of molecules detected, and the most important advantages and shortcomings of each method. This overview provides a basis and rationale for developing standardized antioxidant capacity methods for the food, nutraceutical, and dietary supplement industries. From evaluation of data presented at the First International Congress on Antioxidant Methods in 2004 and in the literature, as well as consideration of potential end uses of antioxidants, it is proposed that procedures and applications for three assays be considered for standardization: the oxygen radical absorbance capacity (ORAC) assay, the Folin-Ciocalteu method, and possibly the Trolox equivalent antioxidant capacity (TEAC) assay. ORAC represent a hydrogen atom transfer (HAT) reaction mechanism, which is most relevant to human biology. The Folin-Ciocalteu method is an electron transfer (ET) based assay and gives reducing capacity, which has normally been expressed as phenolic contents. The TEAC assay represents a second ET-based method. Other assays may need to be considered in the future as more is learned about some of the other radical sources and their importance to human biology.

4,580 citations

Journal ArticleDOI
TL;DR: This critical review has been tailored for a broad audience of chemists, biochemists and materials scientists; the basics of lanthanide photophysics are highlighted together with the synthetic strategies used to insert these ions into mono- and polymetallic molecular edifices.
Abstract: Lanthanide ions possess fascinating optical properties and their discovery, first industrial uses and present high technological applications are largely governed by their interaction with light. Lighting devices (economical luminescent lamps, light emitting diodes), television and computer displays, optical fibres, optical amplifiers, lasers, as well as responsive luminescent stains for biomedical analysis, medical diagnosis, and cell imaging rely heavily on lanthanide ions. This critical review has been tailored for a broad audience of chemists, biochemists and materials scientists; the basics of lanthanide photophysics are highlighted together with the synthetic strategies used to insert these ions into mono- and polymetallic molecular edifices. Recent advances in NIR-emitting materials, including liquid crystals, and in the control of luminescent properties in polymetallic assemblies are also presented. (210 references.)

3,242 citations