scispace - formally typeset
Search or ask a question
Author

Yasuyoshi Watanabe

Other affiliations: Osaka Bioscience Institute
Bio: Yasuyoshi Watanabe is an academic researcher from Osaka City University. The author has contributed to research in topics: Positron emission tomography & Chronic fatigue syndrome. The author has an hindex of 51, co-authored 357 publications receiving 10360 citations. Previous affiliations of Yasuyoshi Watanabe include Osaka Bioscience Institute.


Papers
More filters
Journal ArticleDOI
TL;DR: In the absence of caudalizing signals, floating aggregates of ES cells generate naive telencephalic precursors that acquire subregional identities by responding to extracellular patterning signals.
Abstract: We demonstrate directed differentiation of telencephalic precursors from mouse embryonic stem (ES) cells using optimized serum-free suspension culture (SFEB culture). Treatment with Wnt and Nodal antagonists (Dkk1 and LeftyA) during the first 5 d of SFEB culture causes nearly selective neural differentiation in ES cells ( approximately 90%). In the presence of Dkk1, with or without LeftyA, SFEB induces efficient generation ( approximately 35%) of cells expressing telencephalic marker Bf1. Wnt3a treatment during the late culture period increases the pallial telencephalic population (Pax6(+) cells yield up to 75% of Bf1(+) cells), whereas Shh promotes basal telencephalic differentiation (into Nkx2.1(+) and/or Islet1/2(+) cells) at the cost of pallial telencephalic differentiation. Thus, in the absence of caudalizing signals, floating aggregates of ES cells generate naive telencephalic precursors that acquire subregional identities by responding to extracellular patterning signals.

749 citations

Journal ArticleDOI
TL;DR: A novel amyloid precursor protein (APP) mutation is reported that may provide evidence to address the question of how soluble oligomers of Aβ are proposed to initiate synaptic and cognitive dysfunction in Alzheimer's disease.
Abstract: Objective Soluble oligomers of amyloid beta (Abeta), rather than amyloid fibrils, have been proposed to initiate synaptic and cognitive dysfunction in Alzheimer's disease (AD). However, there is no direct evidence in humans that this mechanism can cause AD. Here, we report a novel amyloid precursor protein (APP) mutation that may provide evidence to address this question. Methods A Japanese pedigree showing Alzheimer's-type dementia was examined for mutations in APP, PSEN1, and PSEN2. In addition, 5,310 Japanese people, including 2,121 patients with AD, were screened for the novel APP mutation. The pathogenic effects of this mutation on Abeta production, degradation, aggregation, and synaptotoxicity were also investigated. Results We identified a novel APP mutation (E693Delta) producing variant Abeta lacking gulutamate-22 (E22Delta) in Japanese pedigrees showing Alzheimer's-type dementia and AD. Although the secretion of total Abeta was markedly reduced by this mutation, the variant Abeta was more resistant to proteolytic degradation. The mutant peptides showed the unique aggregation property of enhanced oligomerization but no fibrillization, and inhibited hippocampal long-term potentiation more potently than wild-type peptide in rats in vivo. Consistent with the nonfibrillogenic property of the variant Abeta, a very low amyloid signal was observed in the patient's brain on positron emission tomography using Pittsburgh compound-B. Interpretation The E693Delta mutation has been suggested as a cause of dementia because of enhanced formation of synaptotoxic Abeta oligomers. Our findings may provide genetic validation in humans for the emerging hypothesis that the synaptic and cognitive impairment in AD is primarily caused by soluble Abeta oligomers.

418 citations

Journal ArticleDOI
TL;DR: The results suggest that NEPPs prevent excitotoxicity by activating the Keap1/Nrf2/HO-1 pathway, and may provide a category of neuroprotective compounds, distinct from other electrophilic compounds such as tert-butylhydroquinone, which activates the antioxidant-responsive element in astrocytes.
Abstract: Electrophilic neurite outgrowth-promoting prostaglandin (NEPP) compounds protect neurons from oxidative insults. At least part of the neuroprotective action of NEPPs lies in induction of hemeoxygenase-1 (HO-1), which, along with other phase II enzymes, serve as a defense system against oxidative stress. Here, we found that, by using fluorescent tags and immunoprecipitation assays, NEPPs are taken up preferentially into neurons and bind in a thiol-dependent manner to Keap1, a negative regulator of the transcription factor Nrf2. By binding to Keap1, NEPPs prevent Keap1-mediated inactivation of Nrf2 and, thus, enhance Nrf2 translocation into the nucleus of cultured neuronal cells. In turn, Nrf2 binds to antioxidant/electrophile-responsive elements of the HO-1 promoter to induce HO-1 expression. Consistent with this notion, NEPP induction of an HO-1 reporter construct is prevented if the antioxidant-responsive elements are mutated. We show that NEPPs are neuroprotective both in vitro from glutamate-related excitotoxicity and in vivo in a model of cerebral ischemia/reperfusion injury (stroke). Our results suggest that NEPPs prevent excitotoxicity by activating the Keap1/Nrf2/HO-1 pathway. Because NEPPs accumulate preferentially in neurons, they may provide a category of neuroprotective compounds, distinct from other electrophilic compounds such as tert-butylhydroquinone, which activates the antioxidant-responsive element in astrocytes. NEPPs thus represent a therapeutic approach for stroke and neurodegenerative disorders.

347 citations

Journal ArticleDOI
TL;DR: Evaluation of neuroinflammation in CFS/ME patients may be essential for understanding the core pathophysiology and for developing objective diagnostic criteria and effective medical treatments.
Abstract: Chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME) is a disease characterized by chronic, profound, disabling, and unexplained fatigue. Although it is hypothesized that brain inflammation is involved in the pathophysiology of CFS/ME, there is no direct evidence of neuroinflammation in patients with CFS/ME. Activation of microglia or astrocytes is related to neuroinflammation. 11C-(R)-(2-chlorophenyl)-N-methyl-N-(1-methylpropyl)-3-isoquinoline-carboxamide (11C-(R)-PK11195) is a ligand of PET for a translocator protein that is expressed by activated microglia or astrocytes. We used 11C-(R)-PK11195 and PET to investigate the existence of neuroinflammation in CFS/ME patients. Methods: Nine CFS/ME patients and 10 healthy controls underwent 11C-(R)-PK11195 PET and completed questionnaires about fatigue, fatigue sensation, cognitive impairments, pain, and depression. To measure the density of translocator protein, nondisplaceable binding potential (BPND) values were determined using linear graphical analysis with the cerebellum as a reference region. Results: The BPND values of 11C-(R)-PK11195 in the cingulate cortex, hippocampus, amygdala, thalamus, midbrain, and pons were 45%–199% higher in CFS/ME patients than in healthy controls. In CFS/ME patients, the BPND values of 11C-(R)-PK11195 in the amygdala, thalamus, and midbrain positively correlated with cognitive impairment score, the BPND values in the cingulate cortex and thalamus positively correlated with pain score, and the BPND value in the hippocampus positively correlated with depression score. Conclusion: Neuroinflammation is present in widespread brain areas in CFS/ME patients and was associated with the severity of neuropsychologic symptoms. Evaluation of neuroinflammation in CFS/ME patients may be essential for understanding the core pathophysiology and for developing objective diagnostic criteria and effective medical treatments.

252 citations

Journal ArticleDOI
TL;DR: Results indicate that MEK plays a central role in the neuronal death caused by oxidative stress, and a novel MAPK/ERK kinase (MEK) specific inhibitor U0126 profoundly protected HT22 cells against oxidative stress induced by glutamate, which was accompanied by an inhibition of phosphorylation of ERK1/2.

244 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Experimental data demonstrating the role of the microenvironment in metastasis is described, areas for future research are identified and possible new therapeutic avenues are suggested.
Abstract: Metastasis is a multistage process that requires cancer cells to escape from the primary tumour, survive in the circulation, seed at distant sites and grow. Each of these processes involves rate-limiting steps that are influenced by non-malignant cells of the tumour microenvironment. Many of these cells are derived from the bone marrow, particularly the myeloid lineage, and are recruited by cancer cells to enhance their survival, growth, invasion and dissemination. This Review describes experimental data demonstrating the role of the microenvironment in metastasis, identifies areas for future research and suggests possible new therapeutic avenues.

3,332 citations

Journal ArticleDOI
TL;DR: The development of Nrf2 knockout mice has provided key insights into the toxicological importance of this pathway, and this review highlights the key elements in this adaptive response to protection against acute and chronic cell injury provoked by environmental stresses.
Abstract: Keap1-Nrf2-ARE signaling plays a significant role in protecting cells from endogenous and exogenous stresses. The development of Nrf2 knockout mice has provided key insights into the toxicological importance of this pathway. These mice are more sensitive to the hepatic, pulmonary, ovarian, and neurotoxic consequences of acute exposures to environmental agents and drugs, inflammatory stresses, as well as chronic exposures to cigarette smoke and other carcinogens. Under quiescent conditions, the transcription factor Nrf2 interacts with the actin-anchored protein Keap1, largely localized in the cytoplasm. This quenching interaction maintains low basal expression of Nrf2-regulated genes. However, upon recognition of chemical signals imparted by oxidative and electrophilic molecules, Nrf2 is released from Keap1, escapes proteasomal degradation, translocates to the nucleus, and transactivates the expression of several dozen cytoprotective genes that enhance cell survival. This review highlights the key elements in this adaptive response to protection against acute and chronic cell injury provoked by environmental stresses.

3,066 citations

01 Jan 2010
TL;DR: In this paper, the authors describe a scenario where a group of people are attempting to find a solution to the problem of "finding the needle in a haystack" in the environment.
Abstract: 中枢神経系疾患の治療は正常細胞(ニューロン)の機能維持を目的とするが,脳血管障害のように機能障害の原因が細胞の死滅に基づくことは多い.一方,脳腫瘍の治療においては薬物療法や放射線療法といった腫瘍細胞の死滅を目標とするものが大きな位置を占める.いずれの場合にも,細胞死の機序を理解することは各種病態や治療法の理解のうえで重要である.現在のところ最も研究の進んでいる細胞死の型はアポトーシスである.そのなかで重要な位置を占めるミトコンドリアにおける反応および抗アポトーシス因子について概要を紹介する.

2,716 citations

Journal ArticleDOI
TL;DR: Application of a selective Rho-associated kinase (ROCK) inhibitor, Y-27632, to hES cells markedly diminishes dissociation-induced apoptosis, increases cloning efficiency and facilitates subcloning after gene transfer, and enables SFEB-cultured hES Cells to survive and differentiate into Bf1+ cortical and basal telencephalic progenitors.
Abstract: Poor survival of human embryonic stem (hES) cells after cell dissociation is an obstacle to research, hindering manipulations such as subcloning. Here we show that application of a selective Rho-associated kinase (ROCK) inhibitor1,2, Y-27632, to hES cells markedly diminishes dissociation-induced apoptosis, increases cloning efficiency (from ∼1% to ∼27%) and facilitates subcloning after gene transfer. Furthermore, dissociated hES cells treated with Y-27632 are protected from apoptosis even in serum-free suspension (SFEB) culture3 and form floating aggregates. We demonstrate that the protective ability of Y-27632 enables SFEB-cultured hES cells to survive and differentiate into Bf1+ cortical and basal telencephalic progenitors, as do SFEB-cultured mouse ES cells.

2,094 citations